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Abstract

We report on a series of laboratory experiments to study the deflecting and retarding
effect of avalanche defence measures. We find that incompressible, shallow-layer shock
dynamics can be used to describe the interaction of high Froude number, steady, dense,
granular flows with obstacles, such as deflecting and catching dams. Stationary, oblique
shocks are formed in the interaction of the flows with deflecting dams, while a travelling
bore is formed upstream of a catching dam when none of the flow over-tops the dam. As
the height of the dam is lowered compared with the depth of the approaching flow, the
bore slows down and finally the flow jumps ballistically over the dam and a shock is not
formed upstream of the dam.
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1 Introduction

The traditional design of dams used to deflect or stop dense snow avalanches has been based
on simple considerations of the energy of a small part of the flow or the run-up of a point-mass
on the upstream facing, sloping side of a deflecting or a catching dam (Irgens et al., 1998).
McClung and Mears (1995) consider the run-up onto a catching dam and by accounting for
the pressures in the flow, conclude that the point mass theory underestimates the run-up by
a factor of two. Both of the approaches, however, may be too idealised. Chu et al. (1995)
have performed small-scale experiments and tested the theory of McClung and Mears against
their observations. Both theories suggest that energy is lost in the impact of the current with
the dam and McClung and Mears hypothesise that the flow loses the normal component of
its approach velocity in the interaction. A fundamental difficulty with the point-mass view of
the impact of an avalanche on a deflecting dam is caused by the finite width of the avalanche,
since the lateral interaction of different parts of the avalanche is ignored. The point-mass
trajectories corresponding to different lateral parts of the avalanche must intersect as already
deflected material on its way down the dam side meets with material heading towards the dam
farther down. The effect of this interaction on the run-up cannot be studied easily using a
point-mass consideration and a more complete physical description of lateral interaction in
the impact process must be developed.

More recent chute experiments and theoretical analysis (Tai et al., 2001, and Gray et al.,
2003) suggest a different flow behaviour in the impact of dense supercritical granular flow
with obstacles. The experiments indicate that a shock (or a jump) is formed upstream of an
obstacle and in the direction normal to the shock, a jump from a supercritical flow state to a
subcritical one occurs which may be modelled by ‘shallow-water’ jump conditions, see for
example (Whitham, 1999). Observations of two natural, snow avalanches hitting deflecting
dams above the village Flateyri in western Iceland (Jóhannesson, 2001) reveal the same phe-
nomena as these laboratory experiments. The avalanche debris that was left behind showed
that the impact had channelised a part of, or the whole of the width of both the avalanches
into thicker streams, travelling parallel to the dam and thereby increased the run-out of the
avalanches significantly. These observations suggest that a shock was formed near the dams
in the interaction.

The fundamental difference between the theoretical approaches described above indicates
that further investigations of the behaviour of granular flows interacting with dams are needed.
Such studies provide a better understanding of the dynamics of the flows. Small-scale labo-
ratory experiments, larger-scale experiments with snow as well as observations of natural
avalanches that hit dams are needed as a part of such investigations.

Three sets of experiments in small-scale laboratory chutes are described in this report.
The experiments involve supercritical, dry, dense, granular flows, short and long in duration,
on steep slopes and supercritical flow of water on shallow slopes. The experiments were
scaled with the internal Froude number of the flows,

����� ���	� 
���

, where

�
is the flow

speed,

 � � 
��������

is the component of the gravitational acceleration perpendicular to a

7



slope inclined at an angle
�

to the horizontal and



is the depth of the flow. The Froude
numbers of the flows were in range of 5–15. The experiments at the lower Froude numbers
are comparable with experimental results of flows interacting with dams reported by Gray et
al. (2003). Those can then be compared with the higher Froude number flows in order to draw
conclusions about the expected flow behaviour in the interaction of the dense core of a natural,
dry-snow avalanche with dams.

The dense core of a natural, dry-snow avalanche has a Froude number of the order 10
(Hopfinger, 1983 and Issler, 2003). The compressibility of the dense core, characterised by
the Mach number of the flow, ��� , is not well understood (Issler, 2003). The Mach number
represents the ratio between the flow speed and the speed of pressure disturbances in the flow
(speed of sound in the flow, � ), ��� � ��� � . In relatively incompressible and shallow free
surface flows, pressure disturbances travel as gravity waves on the free surface of the flow
with a speed of

� 
�

, and the flow is characterised by the Froude number. The shock angle of

the avalanche that was partly channelised by the deflecting dam in Flateyri was small and the
channelised part of the shock was considerably thicker than the undisturbed part of the flow.
The increased flow depth of the shock indicates that the dense core of the avalanche was not
highly compressible and the small shock angle is consistent with a high Froude number flow
(
� �����
	��

). We therefore study the behaviour of the dense core by analogy with high Froude
number, incompressible flows, though that may not apply to all natural, dry-snow avalanches.

The report starts with a short review and discussion of incompressible, shallow-layer shock
dynamics, needed to explain the experimental results (§ 2), followed by a description of the
three experimental series. The first series (§ 3) involves an initial set of experiments of gran-
ular flows at Froude numbers of the order 10, conducted to identify the flow behaviour in the
interaction with a deflecting dam. The avalanches in this series had a short flow duration,
that is the length to depth ratio of the currents was approximately 200. The experimental
observations gave rise to questions that were addressed in the following two experimental
sets where avalanches with a longer flow duration were used (a length to depth ratio of over
10000). Steady water experiments of flows on shallow slopes with Froude numbers close to
5 are described in § 4. They were designed to investigate how well the shallow-water model
and the jump conditions agreed with shallow-water experiments. The final set of experiments
is described in § 5. The experiments involved steady granular flows at three different Froude
numbers; 5, 12 and 14, linking the previous two experimental sets. The three experimental
sets are finally compared in § 6 and some general conclusions are drawn from the combined
experiments.
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2 Shock theory

One approach to modelling the interaction of an avalanche with a dam involves viewing the
avalanche motion as a stream of supercritical shallow-water that undergoes changes in flow
state (hydraulic jump) when interacting with dams. Jumps between flow states have been
observed experimentally with dense granular flows down channels (Savage, 1979) and as
a result of the interaction with catching and deflecting dams in the laboratory (Gray et al.,
2003) and in nature when a snow avalanche of volume

	����
m
�

hit a deflecting dam in Flateyri,
Iceland, in 1999 (Jóhannesson, 2001).

The description of the interaction between granular flow and an obstacle in terms of the
dynamics of shallow-water flow involves a dramatic simplification of the physical processes
that may not provide an accurate description of flows of natural snow avalanches. The theory
is developed below in considerable detail in order to provide a consistent framework for the
interpretation of the experiments that have been carried out. Deviations from the predictions
of this theory can then provide a starting point for a more realistic theoretical description.

2.1 Classical hydraulic jump

PSfrag replacements
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�

�	�

Figure 1: Schematic diagram of a classical hydraulic jump.

Hydraulic jumps are regions where shallow-water flows change from a supercritical to
a subcritical state and thereby dissipate mechanical energy. The transition between the two
states does not occur abruptly, but rather over a finite length,

�	�
, illustrated in Figure 1,

hereafter referred to as the ‘transition zone’.
The characteristics of the hydraulic jump are highly dependent on the Froude number of

the approaching flow,
� � �

. Hager (1992) classifies hydraulic jumps according to the magni-
tude of

� � �
as follows: The hydraulic jump is termed pre-jump for

	�

��� � � ������
��
. A series

of small rollers develop on the surface for
� � � � 	�

�

, and are slightly intensified for increas-
ing Froude numbers. The water surface is quite smooth, and the velocity distribution in the
tailwater is fairly uniform. Transition jumps correspond to Froude numbers between 2.5 and
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4.5. This type of jump has a pulsating action. The entering jet oscillates heavily from the bot-
tom to the surface. Each oscillation produces a large wave of an irregular period. Jumps for� 

�	� ��� � ���

are stabilised jumps with the since they have a limited tailwater wave action, a
relatively high energy dissipation, and a compact and stable appearance. For extremely high
speed flows at Froude numbers above 9, the high velocity jet is no longer able to remain near
the underlying boundary. Slugs of water rolling down the front face of the jump intermittently
fall into the high-velocity jet and generate additional tailwater waves. The surface of the jump
is usually very rough and contains a considerable amount of spray.

According to the classical analysis of two-dimensional hydraulic jumps of a fluid with
isotropic, hydrostatic pressure distributions, mass and momentum fluxes are conserved across
the jump but mechanical energy is dissipated, see e.g. (Whitham, 1999). The analysis de-
scribes the conditions on either side of the transition zone but does not resolve the complicated
three-dimensional structure of the transition zone. Jump brackets, � ��� � , are commonly used to
indicate differences in flow states upstream and downstream of the jump. The conservation of
mass and momentum fluxes across the stationary jump in Figure 1 can be written as

� � ��
�� � � � �	�

 
 
���� ��� 	

�

 � � 
 ��
 
 � � 


(1)

2.2 Normal shocks: Catching dams
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Figure 2: Schematic diagram of a two-dimensional bore travelling upstream from a catching
dam.

When supercrtitical flow passes over an obstacle that is high enough so that the flow state
changes to a subcritical state, fluid starts to pile up upstream of the obstacle. The transition
between a supercritical flow and a subcritical flow is accomplished in a hydraulic jump, as
mentioned above. Figure 2 shows a hydraulic or a granular jump formed when the approach-
ing flow hits a catching dam. A bore travels upstream from the dam and the dam is higher
than the depth of the bore. By choosing a reference frame travelling with the bore at speed

�
to the left, conservation of mass- and momentum fluxes across the jump becomes� � � � ��� 
 ��� � � � 
 ��� ���

(2)

 ��� � � � � � ��� � � 	

�

 � � � 
 � � � 
 ��� ��� � � 	

�

 � � ��
 �� �

(3)
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where

 � � 


is the acceleration due to gravity and
�

is the density of the flow. For incom-
pressible jumps, such as hydraulic jumps,

� � � � �
. For granular materials we expect, on the

other hand, the stationary material downstream of a jump to be somewhat more closely packed
than the dilated flowing material implying

� � � � �
. An expression, relating the ratio of the

shock depth and the depth of the approaching stream to the Froude number of the oncoming
flow and the density ratio,

� ��� � �
, is given by

� � � � 
 �

 �

����� 	���� � ��� � �	� 	

 ����
 � ��
 	


���� 
 �
� � � 
 	

 ����
 ��� � 	

� ��� � ���� 
 (4)

The ratio,

�����
 �

, is plotted in Figure 3 (a) as a function of
��� �

for different density ratios.
Increased density difference lowers the height of the bore. The Froude number of the incoming
flow can, furthermore, be obtained as a function of the ratio of the bore speed and the speed
of the approaching flow and the density ratio

� ��� � 	
� � � �

���� 	 � � � � � ��� � � � � � ��� 	 � � � � � ��� �
� � � � � � � 	 � � � � ��� 


(5)

The function is plotted in Figure 3 (b) for different density ratios. We note that at high up-
stream Froude numbers, the bore speed is slow compared with the speed of the incoming flow
and the increased density difference slows the bore down.

The same set of equations with

 � � 
��������

(the component of gravity normal to a slope
inclined at an angle

�
to the horizontal) may be used to describe flow down an inclined plane,

0

5

10

15

20

 

2 4 6 8 10 12 14 16 18 20

PSfrag replacements

���������������������������������������

 ����
 �

� � �

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

2 4 6 8 10 12 14 16 18 20

PSfrag replacements

���������������������������������������
� � � �

� � �

(b)

Figure 3: The ratio between the bore speed and the speed of the incoming flow as a function of
the Froude number. The density ratios between 1 and 3 are chosen to correspond to possible
density ratios in snow avalanches. Issler (2003) suggests that the dense core of a flowing dry-
snow avalanche has a density in the range

� � �
250–500 kg m

�
while the density of avalanche

debris hardly exceeds
��� �

500–600 kg m
�
.
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Figure 4: Schematic diagram of a bore travelling up an inclined plane, away from a catching
dam, for material with different internal friction angles

�
.

interacting with a dam, when the internal friction angle of the stationary material is larger than
or equal to the slope angle,

��� �
. This will be the case if the transition zone is thin enough

so that the component of gravity along the slope (the additional accelerative term,

 ����� �

) will
not affect the conservation of momentum flux over the bore, see Figure 4. The free surface of
a stationary pile of material is stable at angles up to the internal friction angle of the stationary
pile, this angle is also termed the angle of repose of the material,

�
. The free surface of the

stationary material downstream of the shock is therefore stable at the slope angle
�

if
��� �

and arrests on the slope downstream of the bore with the surface inclined at
�
. That implies

that the depth of the stationary material in front of the dam is

 �

everywhere. In the case of
material with

� � �
(
� � �

for fluids), the stationary material (fluid) arrests on the slope
downstream of the bore with the free surface inclined at the angle of repose and the depth of
the stationary material just in front of the dam,


��
, increases the further upstream the bore

travels. The mass flux, previously described by equation (2), needs to be adjusted in order to
account for the the redistribution of the mass that is stopped in front of the dam

� � 
 ��� � ������ � � � 
 � � � � ���� 
! 
 � � 
�� � 
 �
� " � � � � �

� � � � ����
 ��� � � � � � � 
�� � �$# � � � � � � ��� � (6)

where � is the position of the front of the bore,

�� � 
 � � �$# � � � � � � � and

� � � �%� � �
.

As the height of the catching dam decreases relative to the depth of the approaching
stream, some flow will escape over the dam and reach a critical state at the top of the dam,
see e.g. (Gerhart et al., 1993), while a hydraulic/granular jump is still present upstream of
the dam, see Figure 5 (a). More of the flow escapes over the dam if the height of the dam is
decreased further and finally a bore can no longer be maintained upstream of the dam and the
flow jumps supercritically over the dam, as shown in Figure 5 (b).

The hydraulic/granular jump upstream of a dam with overflow, positioned on a slope in-
clined at an angle

�
with

��� �
can be calculated by considering the conservation of mass and
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(a)

����

�

�
��� � �

(b)

Figure 5: The top figure (a) is a schematic diagram of a granular jump formed upstream of a
dam, when supercritical flow interacts with the dam, some of the flow escapes over the dam.
The flow over the dam is critical,

� � � � 	
,
� � �

,
� � �

. The bottom figure (b) shows
supercritical flow jumping over a dam,

� � �
.

momentum fluxes across the bore in a reference frame travelling with the bore� � � � ��� 
 � � � ��� � ��� 
 ���
(7)	

�

 � 
 � � � � � � � ��� � 
 � � 	

�

 � 
 �� � � ��� � ��� � 
 � 


(8)

We have assumed that
� � � � � � � � for simplicity, since the flow does not stop completely in

front of the dam and will therefore not be as closely packed as in the case of no over-topping.
Conservation of mass flux over the dam in a stationary frame of reference becomes


 � ����� 
 � � � ����� � � 
 � � 
 � ��� �
(9)

by, for simplicity, assuming that the flow is in a constant, uniform state downstream of the
jump, i.e. the downslope component of gravity is balanced by friction. The flow goes through
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another transition of state as it passes over the dam. It is subcritical upstream of the dam and
supercritical downstream of the dam. We therefore find that the flow over the dam is critical,
leading to a final constraint on the flow:

� � � � 	 � ��� � � � ��������� � � # � � # � � ��� 
 � 
 � 
 (10)

In the case of material with
� � �

, the free surface of the granular material is stable at the
angle of repose if

� �
is sufficiently small and equation (9) becomes

� 
 � � �$# � � � � � � � � ��� � 
 � � � ����� � � 
 � � 
 � � � # � � � � � � �	� � �
(11)

and � is the distance from the front of the bore to the catching dam, see Figures 4 and 5 (a).
A hydraulic/granular jump can no longer be maintained upstream of the dam when the

computed speed of the bore becomes negative and the flow jumps over the dam in a supercrit-
ical flow state. The jet takes a ballistic trajectory over the dam as described by Hákonardóttir
et al. (2003a and 2003b) for flows with braking mounds and catching dams in which the
obstacles have a height comparable to the depth of the approaching flow.

2.3 Oblique shocks: Deflecting dams
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Plan-view
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	�
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	�� � � ��� ��� � � � � ������� � �
�� � � � � � � � � ����� � �
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Figure 6: Uniform fluid flow hits a deflecting dam at an angle � and a stationary, oblique
shock is formed at an angle

�
to the incoming flow. Unit vectors normal and tangential to the

shock are denoted by
�� and

�� . The flow downstream of the shock is parallel to the dam.

Shock conditions can be formulated for fluid flow hitting a deflecting dam and forming
an oblique, stationary shock that is flowing with a constant speed in a direction parallel to the
dam. These conditions can be obtained in most text books on gas dynamics, e.g. (Whitham,
1999), and adapted to shallow-water flow. We assume that

� � � � �
in the granular flow, since

the flow on both sides of the shock is in a dilated flowing state. The conservation of mass flux
across the jump takes the form � � 
 	�� �� � � � �	�
which leads to 
 � � � ����� � � � � � � 
 � � � � ��� � 


(12)
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Conservation of momentum flux across the jump can be written as

 
 
 	 � 	 � �� � � 	

�

 � 
 � �� 
 
 � �	�

which in the directions normal and tangential to the shock becomes
	
�

 � 
 �� � 
 � � �� � ��� � � � � � � � 	

�

 � 
 � � � 
 � � � � � � � � � �

(13)

�� � �� ����� � � � � � ����� � � � � � � 
 � � � � � ��� � ��� � � 


(14)

Equation (14) together with (12) implies that the speed along the shock must be continuous

��� � ��� � � � � � � � � ����� � 

By solving (12), (13) and (14) for a given incoming speed and flow depth, the outgoing flow
speed and depth can be calculated along with the oblique shock angle,

�
. An expression,

relating the shock angle to the known flow parameters (the Froude number of the flow and the
deflecting angle of the dam) is given by

� � � � 	
� � � � ���� # � � �

� # � � � � � � � 
 # � � �# � � � � � � � � 	 � 
 (15)

For a given Froude number and a given deflecting angle, there are two possible shock angles.
The smaller angle corresponds to a weak shock and the larger one to a strong shock. As � � �
the weak shock tends to

� � � ����� � � 	 � � � � �
and the strong shock tends to a normal shock, for

which
� � � ���

. The flow speed downstream of a weak shock is nearly always supersonic,
while the speed becomes subsonic through a strong shock. We restrict our discussion to weak
shocks since those are the ones that usually occur in practice. Using equation (15), we plot
the behaviour of the shock angle relative to the dam as a function of the Froude number for
constant deflecting angles in Figure 7 (a) and as a function of the deflecting angle for constant
Froude numbers in Figure 7 (b). The plots indicate that the shock angle is highly dependent
upon the Froude number of the flow and becomes smaller with increasing Froude number.
We furthermore note that for high Froude numbers, the shock angle is relatively independent
of the deflecting angle of the dams. The ratio between the shock height and the depth of
the approaching stream is plotted as a function of the Froude number for constant deflecting
angles in Figure 7 (c) and as a function of the deflecting angle for constant Froude numbers in
Figure 7 (d). The plots show that the shock depth increases with increasing deflecting angles
and Froude numbers.

In this analysis, the pressure in the granular material has been assumed to be hydrostatic
and isotropic. There is a debate in the granular flow literature about whether the assumption
of an isotropic pressure field is appropriate for granular flows such as snow avalanches. For
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Figure 7: The shock angle relative to the deflecting dam plotted: (a) as a function of the Froude
number for constant deflecting angles and (b) as a function of the deflecting angle for constant
Froude numbers. The shock height non-dimensionalised by the depth of the approaching flow
plotted: (c) as a function of the Froude number for constant deflecting angles and (d) as a
function of the deflecting angle for constant Froude numbers.

example, Savage and Hutter (1989) link the components of the pressure field parallel with and
normal to the slope, ����� and ����� , through an earth pressure coefficient, defined by� � ���������� 

Values of the earth pressure coefficient may be derived assuming a Mohr-Coulomb plastic
behaviour for the cohesionless yield on the basal sliding surface,� ��� ������� for

� ��� � � � �	�� ����!�!
for

� ��� � � � �	�
with � ������"�����!�! � �$# 	&% � 	 � ����� � � � ����� �('*) � � � � � � 	 �
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where
�

is the internal friction angle of the granular material and �
� # � � ' is the dynamic

friction coefficient at the bed. If the jump conditions (1) are implemented with anisotropic
pressure, then the conservation of momentum flux across the bore becomes


 
 
 ��� ��� 	
�
� ����!�! 
 � � 
 ��
 
 � � 


(16)

Gray et al. (2003) and Pouliquen and Forterre (2002) treat the pressure in granular flows
as isotropic and hydrostatic and obtain better agreement with the experimental results than
when using an earth pressure coefficient. Gray et al. also argue that the discontinuity in
the pressure, introduced through the earth pressure coefficient, is unphysical and should lead
to a discontinuity in the flow depth. They base their theoretical model on older models of
avalanches, developed by Russian scientists, see e.g. (Eglit, 1983), where direct analogy is
made between granular avalanches and shallow-water flows.
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3 Laboratory experiments of short duration,
steady granular flows interacting with deflecting dams

The experiments were designed to study the deflection of high Froude number granular flow
by a dam and to compare the flow behaviour in the interaction with the dam with the point
mass theory and the shallow-water theory, described in § 2. The necessary height of a de-
flecting dam at a constant deflecting angle, needed to fully deflect the oncoming flow, was
quantified and the flow behaviour if some of the flow escaped over the dam was studied.

3.1 Experimental setup and design

The experiments were performed on a 6 m long wooden chute consisting of two straight sec-
tions, one inclined at ���

�
to the horizontal and the other one horizontal, see Figure 3.1. The

sections were connected by a thin plywood sheet, positioned 2.32 m downslope from the gate,
to obtain a smooth transition between the sections. The chute had 0.20 m high side walls made
of perspex to allow for recording from the sides.

The deflecting dams were constructed of plywood and positioned at the upper section of
the chute, 1.69 m downslope from the gate perpendicular to the base of the chute, at five
different deflecting angles to the flow; � � �

�
,
	 � �

,
� � �

, �
� �

and
� � �

, see Figure 8. The dams
had a flow depth to dam height ratio from 1 to 20, or up to the dam height needed to fully
deflect the flow for each deflecting angle.

The experiments were designed so that the granular current had an internal Froude number
of the order 10. Glass beads (ballotini) of mean size 90 � m, density 2500 kg m

� �
(bulk density

of 1600 kg m
� �

) and an approximately spherical shape were used. In each experiment, 6 kg
of particles were released from the top of the chute by the rapid opening of a lock gate. The
interaction between the flow and the deflecting dams was recorded from above and from the
side with two video cameras. The evolution of the depth profile on the deflecting dams was
measured by analysing the side-view video footage of the experiments. The angles of the
deflected and the overflowing parts of the stream to the deflecting dam were analysed from
the video footage provided by the camera that was positioned above the dams. The run-out
length and distribution of the deposited particles were also measured.

The speed of the flow in front of the dams was measured over a length of 0.40 m by
tracking the first front of the flow and tracer particles for interior speeds. The maximum flow
depth was measured by fixing a gate in the flow path at a known distance from the base of the
chute. The distance of the gate from the chute was then increased systematically until all of
the current flowed under the gate without touching it.
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Figure 8: Schematic diagrams of the experimental chute, (a) shows a side-view of the chute
and (b) a plan-view of the chute section next to the deflecting dam. The run-out zone starts
were the slope angle changes, at the curved sheet. The channelled section of the chute is
approximately 1.70 m long, measured from the lock gate.

3.2 Flow description

The flow quickly reached a terminal velocity on the upper section of the chute and flowed
down the chute with a constant speed and a constant depth. The head of the flow was
about 0.50 m long, 0.04 m thick and had a speed of

�
�

��
� � 


�
�

m s
�
�
. It was very dilute

(it could be seen through when looked at from above) and turbulent, with eddies suspending
the glass beads. The flow immediately following was much denser with a constant depth of
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Figure 9: Flow speeds plotted as a function of time for experiments number (i) 83 to (iv) 86.
The speed was measured at a fixed position, in front of the deflecting dams.

� � 
 � � �
� � 
 � � 	 �
m and speed of

�
�


� � � 
 	 �

m s
�
�
, resulting in a Froude number of 13. The

dense flow phase was maintained for 0.6 s, so the flow was roughly 2.1 m long. This flow
phase will be referred to as the steady flow phase. The flow rapidly thinned and slowed down
after that, see Figure 9.

During the experimental period the particles changed slightly in character, leading to in-
creased mobility of the flow. The run-out lengthened linearly by approximately 5% during
the period, measured from the start of the run-out zone. The front speed of the flow was also
found to increase linearly through the experimental period, see Figure 10. The interior speeds
(the speed of the steady flow phase) were only measured at the end of the experimental pe-
riod. It was thus assumed that the steady interior speed increased throughout the experimental
period in the same fashion as the front speed, but with a 0.2 m s

�
�

lower speed as Figure 9 sug-
gests. A summary with the exact values of the interior speeds that were used for the different
deflecting angles is given in Table 1.

3.3 Results: Flow completely deflected by the dams

The dilute first front splashed onto the deflecting dam up to a similar height as the denser part
immediately following and forming a semi-steady profile on the dam. The width of the stream
flowing along the dam increased downstream and finally formed a jet at the end of the dam in
a direction parallel with the dam. Figure 11 shows that the maximum run-up of the granular
avalanches on the dams grew with increasing deflecting angles.

The effect of subjecting larger and smaller proportions of the avalanches to the deflect-
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Figure 10: The maximum run-out and the front speed plotted as a function of the sequential
number of the experiment performed (

�
) with a linear fit through the observations. The

maximum run-out was measured from the start of the run-out zone (the curved sheet).

� � � � No.
�

[m s
�
�
]

�

 � � � 

�

65 3.3	 � 
 �
� � 

�
60 3.3� � 
 �
� � 

�
47 3.1

�
� 
 �
� � 

�

39 3.0� � 
 �
� � 

�
55 3.2� � 
 �
� � 
 	
11 2.7

Table 1: The estimated interior speed of the flow,
�

, during the steady flow phase for the
different deflecting angles, � . The number of each experiment is denoted by No.

ing dams on the run-up on the dams (long and short dams) was examined for three different
deflecting angles. Figure 12 shows a plot of the locus of the maximum run-up onto the de-
flecting dams for deflecting dams covering different proportions of the width of the avalanche,� 

��� � � 	 � 	�
 	 , where 	 is the width of the avalanche and

�
is the deflected width defined

in Figure 8. The maximum flow depth along the dams was always reached after a distance
that was shorter than the length of the dams. Changing the length of the dams did therefore
not alter the maximum flow depth in front of the dams. It was furthermore concluded that the
end of the dams, where the pressure suddenly drops, did not affect the run-up profiles on the
dams significantly, which is consistent with the flow being in a supercritical flow state along
the dams.
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Figure 11: The locus of the maximum run-up on the deflecting dams non-dimensionalised
with the thickness of the incoming stream plotted as a function of the length along the dams
for the different deflecting angles. The uncertainty in the non-dimensional run-up is estimated� 	

due to the short duration of the steady flow phase and an inaccuracy in drawing/visualising
the curves from the video recordings.

3.3.1 Comparison with existing theories

The point mass model (PM), developed by Irgens et al. (1998), was used to calculate the path
of a point-mass along a deflecting dam, assuming no loss of energy in the impact with the
dam. The Coulomb friction parameter in the model, � , was taken to be �

� # � � ' , where
'

is
the dynamic friction angle between the flow and the base of the experimental chute which was
measured to be about

� � �
, implying � � � 
 �

. The dimensional coefficient representing turbu-
lent dissipation,

� ���
, can be determined from the steady state of the momentum equation,

see Irgens et al. (1998) � � � � � ��� � 
 � ����� � �
�
� ��� � � 


(17)

By substituting the measured, steady flow speed and depth on the chute into equation (17) we
obtain

� ��� � �
m. The physical range of these parameters for snow is discussed by Perla

(1980).
Figure 13 shows that for small deflecting angles, the point mass model predicts the run-up

on the deflecting dams well, but overshoots when the deflecting angle increases. No parameter
values, within a reasonable physical limit of the two parameters, � and

� ���
, could reproduce

all the observed curves at once. The reason might be that dissipation of the mechanical energy
of the flow takes place when the current impacts the dams. The dissipation can be assumed to
increase with larger deflecting angles as the velocity component normal to the dams increases.
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Figure 12: The non-dimensional run-up profiles of the avalanches on the deflecting dams
plotted as a function of the length along the dams. The deflecting dams covered different
proportions of the width of the avalanches,

� � 	 (see Figure 8 for definition), between 0.2 and
1.1. The maximum run-up was reached during the steady flow phase.

If that is the case, tilting of the dams should affect the dissipation and the run-up on the dams.
McClung and Mears (1995) account for internal pressure in the flow, which is neglected in the
point-mass theory. They find that the run-up onto catching dams becomes twice as high as the
point-mass theory predicts. The experiments reported here show the opposite, at least when
no additional dissipation is incorporated. McClung and Mears, furthermore, suggest that the
flow should lose its velocity component normal to the dam in the impact. That implies that
there should not be run-up onto dams that have an upstream face normal to the slope on which
they are positioned and is therefore not in agreement with our experimental results. The point
mass theory developed by Irgens et al. and the more advanced theory by McClung and Mears
do not seem to capture the physics of the interaction correctly.
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Figure 13: Non-dimensional run-up profiles for granular flows at
� ��� � 	

� . Each graph shows
the observed depth profile along the deflecting dams, non-dimensionalised with the depth of
the approaching stream, for a fixed deflecting angle, � (

�
). The theoretical non-dimensional

run-up of a point mass is shown with a solid curve and the theoretical non-dimensional shock
height with a dashed line.
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The granular flow consists of a thin, dense layer of numerous interacting point masses
and can therefore be viewed to some approximation as a fluid or gas-like current. The flows
are shallow, supercritical and not highly compressible, which gives rise to the possibility of
shocks in the flow depth forming upstream of the dams (granular jumps) see the theoretical
overview in § 2. The shock height,


 �
, was calculated from the shallow-water jump condi-

tions, equations (12), (13), and (14), and is plotted in Figure 13 as a straight line. We see that
the observed run-up (

�
) is initially higher than the predicted shock height. The run-up then

decreases along the dams and the theoretically derived shock height predicts the run-up close
to the end of the deflecting dams. By introducing an earth pressure coefficient,

�
, into the

jump conditions (equation (16)) the theoretical shock height is lowered, since
� ������"�� ��! ! � 	

,
and worse agreement with the experimental observations is obtained. The theoretical shock
angle is plotted in Figure 14 along with the observed widening of the stream along the deflect-
ing dams for the different deflecting angles.

The agreement of the shock theory with the experimental observations indicates that a
shock forms upstream of the deflecting dams as is expected for supercritical flow of incom-
pressible fluids interacting with deflectors. What still remains unclear from these experiments
is why the flow ran higher up on the dams than the jump conditions predicted and had a ten-
dency to turn over in a backwards rotating motion along the first 0.4–0.5 m of the dams. It
is also unclear whether gravity disturbs the shock formation or influences the shock height
along the dams, since the experiments were conducted with steady flows on a sloping surface,
whereas the theory was derived for fluid flow on a horizontal plane where the flow states on
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Figure 14: The shock angle relative to the dam,

� � � , plotted as a function of the deflecting
angle, � , for the theory (dashed line) and the experimental observations (

�
).
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both sides of the shock are constant. There is furthermore a possibility that friction at the side
of the dam affects the relatively narrow shock. The steady state flow phase was also quite
short (

� � 
��
s) and one wondered whether the run-up onto the dams would develop further for

a longer steady flow phase.

3.4 Results: Flow over-topping the dams
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Figure 15: Plan-view of the experimental chute defining the overflow angle, � .

The over-topping of flow interacting with deflecting dams was investigated by measuring
the overflow angle, � , defined in Figure 15, during the steady flow phase for dams of different
heights,

�
, and at different deflecting angles, � . When the deflecting dams were not high

enough to fully deflect the flow, a part of the flow over-topped the dams. The experiments
showed that for very low dams the current shot over the dams in a direction close to that of the
approaching stream, � � �

. The jets were then turned more in the direction of the deflecting
dams as the dams became higher and the overflow angle of the jets approached the deflecting
angles of the dams as the height of the dams approached the height needed to fully deflect
the current, i.e. � � � for

� � 
��
, if a shock is formed upstream of the dams. This effect

is illustrated in Figure 16 where � � � is plotted as a function of
� � 
 �

for the five deflecting
angles.
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4 Laboratory experiments of steady water flows
interacting with deflecting dams

Two series of water experiments were conducted to study how well shallow water shock theory
agreed with observations of rapid, shallow water flow.

4.1 Experimental setup and design

Figure 17: A photograph of the experimental setup for rapid flows of water. A steady stream
of water was supplied through 3 hoses and stored in a reservoir. The water flowed over a weir
and under a gate to minimise turbulence and wave action, and continued down a 0.2 m wide
perspex channel before finally hitting a deflecting dam, also made of perspex. The deflecting
dams were 0.3 m long and did never completely cover the width of the channel.

The experiments involved a steady stream of supercritical water flow down a 0.2 m wide
channel at a speed

� �
and a depth


 �
. This stream hit a deflecting dam and formed a steady

hydraulic jump of height

��

with speed along the dam,
� �

, see Figure 17. The flow ended
up in a large tank that gradually filled during the experiments, since the draining system did
not fully cope with the flux of water into the tank. It was therefore necessary to split the
experiments into two series: one to measure the height of the hydraulic jump and another to
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measure the deflecting angle. The depth profiles on the dams and the deflecting angles were
photographed with a digital camera, through the side of the dams and from above (Figure 18).
The depth profiles and shock angles were measured for water flow on three different slopes,
inclined at �

�
,

���
and

���
to the horizontal. The flow speed,

� �
, and depth,


 �
, upstream of the

dams were different for the different channel slopes, and consequently the oncoming flow had
different Froude numbers in each of the three different experimental setups.

Figure 18: Photographs of stationary, oblique shocks of supercritical shallow water at
� ��� �� 

�

, � � � ���
(first figure) and

� � � � �
, � � � ���

(second figure), looking up into the streams
along the deflecting dam. The bottom photograph shows a close-up of the second photograph,
looking onto the side of the deflecting dam. It can be observed that the flow runs higher up on
the deflecting dam at the start of the dam and then falls back on itself and the shock widens
and becomes thinner.
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4.2 Results

The incoming flow speeds and depths along with the Froude numbers in the two experimental
series are summarised in Table 2. The first front of the flows splashed up higher on the dams
than the steady hydraulic jumps. All of the experimental sets involved stabilised hydraulic
jumps (

� 

� � � ��� � �
) that are relatively free of wave action, apart from the experiments

on the �
�

slope where the hydraulic jump is on the boundary of being a stabilised jump and
might be categorised as a transitional jump with pulsating action (Hager, 1992). The Reynolds
number is defined by � � � ��� 
��

� , where
�

is density and � is viscosity. In the experiments,
we find that Re is sufficiently large that viscous effects may be neglected.

The run-up profiles along the dams are plotted in Figure 19. The flow depth along the
dams was found to be nearly constant, for dams at � � � � �

. For dams at the largest deflecting
angles, � � � ���

, there was a zone at the beginning of the dams with higher run-up and
overturning of the flow. The flow ran up, reached a maximum height and fell back upon the
oncoming stream in a rotating motion. The flow depth in front of the dams was approximately
constant further along the dams.

A possible explanation for the higher run-up and overturning of the flow at the beginning
of the dams lies in the finite width of the highly turbulent transition zone. The width of the
transition zone is denoted by

�	�
in Figure 20. The higher run-up occurs when the transition

zone intersects with the beginning of the dams. The turbulence in the transition zone pushes
the water higher up on the dams than the depth of the hydraulic jump along the dams. The
region along the dam where the dam and the transition zone intersect will be referred to as the
‘adjustment region’. The length of the adjustment region should increase with firstly smaller
shock angles and secondly a wider transition zone. Figures 7 (a) and (b) show that the shock
angle decreases with increasing Froude number, and for Froude numbers above 5 the shock
angle is relatively independent of the deflecting angle. There should therefore be an increase in
the length of the adjustment region with higher Froude number flows. Furthermore, studies of
hydraulic jumps show that the transition zone widens as the shock height increases for Froude

Series
�

[
�
]

� �
[m s

�
�
]


 �
[m]

� ���
Re

I 3
	�
 ��� � � 
 ��� � 
 � � ��� � � � 
 � � � ��� � 
 � � � 


� 6100
6

	�
�� � � � 
 �
�

� 
 � � � � � � � 
 � � � ��� � 

�
� � 
��

6000
9

	�
 � � � 
 	 � 
 � � � � � � � 
 � � � ��� � 
 � � � 

� 6100

II 3
� 
 ��� � � 
 ��� � 
 � � � � � � 
 � � � � � 
 	 � � 
 �

5200
6

	�
 	
�
� � 
 ��� � 
 � � � � � � 
 � � � � � 
�� � � 
��

5300
9

	�
�� � � � 
 �
�

� 
 � � � � � 
 � � � � � 
 � � � 

� 5000

Table 2: A description of the steady stream of the incoming flow for the two experimental
series. Series I was used to measure the depth profile along the dam and series II to measure
the shock angle.

30



0

2

4

6

8

 

       

� ��
 �
� ��� � � 

�

 

 

 

 

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3� [m]

� ��� � � 
 �

0

2

4

6

8

10

0 0.05 0.1 0.15 0.2 0.25 0.3� [m]

� ��� ��� 
 �

Figure 19: Non-dimensional run-up profiles along the deflecting dams of steady water at
different Froude numbers. Each curve shows the steady shock height at a fixed deflecting
angle. The deflecting angles tested were: � � � �

, 10
�
, 15

�
, 20

�
, 30

�
and 40

�
. The shallowest

profile on each graph corresponds to the 5
�

deflection and the deepest to the 40
�

deflection.

numbers up to around 7. (For
	 � � � ��� �

,
� � �	� ��
�� � �

, see for example (Gerhart et
al., 1993).) Figures 7 (c) and (d) show that the shock height increases with increasing deflect-
ing angles for flows at fixed Froude numbers. The adjustment region should therefore also
lengthen with wider deflecting angles. The shock height furthermore increases with higher
Froude numbers for fixed deflecting angles, see Figure 19. That enhances the lengthening of
the adjustment region for higher Froude number flows.

An increase in the length of the adjustment region with higher Froude number flows is not
obvious from the run-up profiles in Figure 19 due to the narrow range of the Froude numbers.
The transition zone in the experiments was observed to widen as a function of the deflecting
angle (and consequently as a function of the flow depth of the hydraulic jump) from being
just under

� 
 � 	
m for � � � �

to about
� 
 �

� m for � � � � �
. A longer adjustment region for the

larger deflecting angles is observable from the run-up profiles in Figure 19 due to this effect.
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Figure 20: Schematic diagram of the adjustment region along a deflecting dam, caused by the
intersection of the turbulent transitions zone with the deflecting dam.

The run-up at the beginning of the dams is observed to increase with increasing deflecting
angles. That may be caused by the increase in the velocity component of the approaching
flow normal to the dams,

� ����� � , since the pressure distribution in the turbulent adjustment
region is far from being hydrostatic and the flow may follow ballistic trajectories along the
side of the dam in this region.

We now compare the experimental results with the predictions of the steady-state shock
theory in some detail. The system of equations (12), (13) and (14) was solved numerically for
the shock depth,


��
, speed,

� �
, and angle,

�
, for a given incoming flow depth,


 �
, speed,

� �
,

and deflecting angle, � . The shock angle relative to the dam,
� � � , is plotted in Figure 21 as

a function of the deflecting angle. There is good agreement between the experimental results
and the theory for the three experimental series. The predicted shock height is plotted as a
straight line on Figures 22, 23 and 24 along with the observed run-up profile. The agreement
is fairly good apart from the observed higher run-up at the beginning of the dams.

We conclude that the hydraulic jumps on shallow slopes are well described by the shallow-
water jump conditions where constant flow states are assumed on both sides of the hydraulic
jump. There is, however, a region close to the beginning of the dams where the flow runs
higher up on the dams than the theory predicts, due to turbulence in the transition zone. This
adjustment region lengthens, and the flow depth in front of the dams in the adjustment region
increases relative to the surface of the constant hydraulic jump further down stream, with
higher Froude number flows and larger deflecting angles.
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Figure 21: The shock angle relative to the dam plotted as a function of the deflecting angle for
the three different Froude numbers. The lines show the theoretical predictions and the points
are the experimental results.
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Figure 22: Non-dimensional run-up profiles for water flow at
� ����� � 

�

. Each graph is a plot
of the observed depth profile along the deflecting dam, non-dimensionalised with the depth of
the incoming stream at a fixed deflecting angle, � (

�
). The theoretical non-dimensional shock

height,

�����
 �

, is shown with a dashed line.
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Figure 23: Non-dimensional run-up profiles for water flow at
� ����� � 
 �

. Each graph is a plot
of the observed depth profile along the deflecting dam, non-dimensionalised with the depth
of the incoming stream, for a fixed deflecting angle, � (

�
). The theoretical non-dimensional

shock height,

���� 
 �

, is shown as a dashed line.
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Figure 24: Non-dimensional run-up profiles for water flow at
� ����� � 
 �

. Each graph is a plot
of the observed depth profile along the deflecting dam, non-dimensionalised with the depth
of the incoming stream, for a fixed deflecting angle, � (

�
). The theoretical non-dimensional

shock height,

���� 
 �

, is shown as a dashed line.
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5 Laboratory experiments of steady granular flows
interacting with deflecting and catching dams

A series of experiments at three different Froude numbers was designed to study the formation
of a steady, oblique, granular shock along a deflecting dam, positioned on a sloping chute. The
objective of the experiments was to maintain a steady flow for a few seconds in order to link
the granular jumps on steep slopes, described in § 3, to the hydraulic jumps on shallow slopes,
described in § 4. The effect that tilting of the upstream dam faces had on the oblique shocks
was also investigated. The formation of a granular jump upstream of a catching dam was then
explored and the height of the catching dam at which a bore could no longer be maintained
upstream of the dam was determined.

5.1 Experimental setup and design

Figure 25: A photograph of the steady, granular experimental setup.

The same setup and the same particles were used as in the short granular experiments de-
scribed in § 3.1, but with the channel narrowed by 0.1 m, to 0.225 m. The release mechanism
was adjusted so that it was possible to control the depth of the flow out of the hopper. As
before, the flow was released by abruptly opening a lock gate, see Figure 25.
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The experiments within each series were conducted during a 12 hour period to minimise
the effect of changes of the humidity in the laboratory on the ballotini beads. The flow speed
and depth were measured at the start and end of each experimental set. The flow speed was
measured by tracking tracer particles that were thrown into the flow and the flow depth was
measured using an optical depth sensor (ODS96) that uses infrared light to measure the dis-
tance to a surface.

The deflecting dam experiments were conducted at three different Froude numbers:
��� 	 �

and 14, overlapping the values in the previous experiments with water and granular flows, and
for five different deflecting angles: � � �

�
,
	 � �

,
� � �

, �
� �

and
� � �

. The dams had an upstream
face perpendicular to the experimental chute, �

� � � �
, where � is the angle between the

upstream dam face and the chute. The dams were
� 

�

m long and covered different proportions
of the flow path,

� � 	 , see Figure 8 (b) for definitions. For � �
�
�
,
	 � �

and
� � �

,
� � 	 � 	

, but
for � � �

� �
,
� � 	 � 	�
 	

and for � � � � �
,
� � 	 � 	�
��

, which means that the dams extended out
of the flow-path for the two largest deflecting angles.

The flow depth along the dams and the shock angles at the dams were measured from
video footage of the experiments. The flow speed was measured inside the shock, along the
deflecting dam, for � � � � �

, by tracking tracer particles that were thrown into the flow. The
effect of tilting the sidewalls of the dams was examined for

� � � � 	 �
, � � � � �

and �
� � ���

,��� �
,

� ���
and

� � �
, again by measuring the steady shock angle and flow depth along the dam

for each value of � .
Catching dam experiments were conducted for flows at

��� � � 	 �
and 14. The dams

had an upstream face perpendicular to the experimental chute. The height of the dams was
systematically lowered and the speed of the bore travelling upstream was measured along with
the depth of the bore and the depth of the flow over-topping the dam when overflow occurred.
The effect of tilting the upstream face of the dams to �

� � � �
was also explored.

5.2 Results: Deflecting dams

The characteristics of the steady stream are given in Table 3. The flow reached a steady,
uniform state (constant flow speed and depth) very quickly (within the first tens of centimetres
from the release) on the steep section of the experimental chute. The steady stream hit the
deflecting dam approximately 2 m further down and a stationary oblique shock was formed
within a fraction of a second of the initial impact, see Figure 26. The dilute first front of the
flow splashed up to a similar height on the dams as the shock.

The run-up profiles along the dams are plotted in Figure 27 for the three different Froude
number flows. The oblique shocks were stationary for all but the largest deflecting angles. The
dams for the �

� �
and

� � �
deflections extended out of the flow path of the avalanches leading

to the slowing down of the current along the end of the dams and the subsequent pile up of
material in front of the dams. This was observed for

� � � � �
with � �

�
� �

and
� � �

and also
for

� ��� � 	 �
and 14 with � � � � �

. The plotted profiles of the unsteady flows are those that
were observed before the material started to pile up in front of the dams.
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Figure 26: Photographs of oblique, granular shocks for � � � � �
for two different Froude

numbers,
�����	� �

and 12, on slopes inclined at
� � � � �

and �
� �

, looking downstream onto
the deflecting dams. The shock is narrower on the photograph to the right (

� ��� � 	 �
) and the

flow flips over and falls back on the oncoming stream at the beginning of the dam.

�
[
�
]

� �
[m s

�
�
]


 �
[m]

� ���
� � 
��
� � 

� � 
��
� � 
 � 	 � 
 � � � �
� � 
 � � � � �

�
� 

�
� � 

� 	�


�
� � � 
 � � � 
 � � ��� � � 
 � � � � 	 �

�
� 

�
� � 

� 	�

��� � � 
 � � � 
 � � 	

�
� � 
 � � � � 	 �

Table 3: A description of the steady stream of granular flow for the three different experimen-
tal setups.

If these unsteady profiles are not considered, the run-up profiles along the dams show an
approximately constant depth along the dams. The profiles follow the same trend as previously
observed for the water and granular flows; larger Froude numbers and deflecting angles lead
to higher run-up on the dams.

The turbulent transition zone intersected with the upper most part of deflecting dams in
the water experiments and the flow ran higher up on the dams in this region relative to the
hydraulic jump further downstream. This effect is less profound in these granular experiments
since higher run-up on the dams is not observable from the run-up profiles. The flow was,
nevertheless, observed to turn over and fall back on itself at the start of the deflecting dams
for the the higher Froude number flows,

� � � � 	 �
and 14, see Figure 26. The transition zone

was observed to be much thinner than in the water experiments (less than 0.01 m wide for all
of the deflecting angles).

The experimental results can be compared with the shallow-water jump conditions. Equa-
tions (12), (13) and (14) were solved numerically for the shock depth, speed and angle:


 �
,
���

and
�

, for a given incoming flow depth, speed and deflecting angle:

 �

,
� �

and � . The shock
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Figure 27: Non-dimensional run-up profiles along the deflecting dams for steady, granular
flow at three different Froude numbers,

� � � � ��� 	 ��� 	 �
. Each curve shows the steady shock

height for a fixed deflecting angle, the different curves belong to different deflecting angles; 8
�
,

15
�
, 24

�
, 32

�
and 44

�
. The shallowest profile on each graph corresponds to the 8

�
deflection

and the deepest to the 44
�

deflection. The profiles for
� � � � �

with � �
�
� �

and
� � �

and for� ��� � 	 �
and 14 with � � � � �

were unsteady.

angle is plotted as a function of the deflecting angle in Figure 28. The shallow-water theory
accurately predicts the experimental results for all three Froude numbers. The observed depth
profiles along the dams are plotted in Figures 29, 30, 31, and show good agreement with the
predicted shock height after the short distance along the dams that it takes the flow to reach
the depth of the hydraulic jump. The depth profiles for the

� � � � �
show a slight increase

in the flow depth along the dams while there is no increase in the flow depth for the higher
Froude number flows.

The effect of tilting the sidewalls of the dams between �
� � � �

and �
� � ���

for
� � � � 	 �
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Figure 28: The shock angle relative to the dam,

� � � , plotted as a function of the deflecting
angle for the three different Froude numbers. The lines show the theoretical predictions and
the points are the experimental results. The shocks were unsteady for

� � � � �
and � �

�
� �

and
� � �

;
� � � � 	 �

and
	 �

and � � � � �
, so that no shock angle was observed.

did not affect the shock formation. The shock angle and the depth, measured normal to the
chute, remained the same as for a deflecting dam normal to the chute, �

� � � �
. The area per

unit width of the dam over which the normal pressure acts is

 � � � � �

� , where

��

is the flow
depth at the dam, measured normal to the chute. The total normal force on a unit width of
the dam thus becomes

��
 � 
 �� � � � ����� �
�

and increases by a factor of
� �

for dams at �
� � � �

compared with dams at �
� � � �

. The Coulomb friction force on the dams is proportional
to the normal force on the dams, and thus increases by tilting the dams. If Coulomb friction
affects the run-up onto the dams, there should be a visible difference in the run-up profiles on
the dams for dams tilted at different angles. This does, however, not seem to be the case in
these high Froude number experiments.

We conclude that shallow-water jump conditions that assume constant flow states on both
sides of the jump can be used to describe granular jumps along deflecting dams on non-
accelerative slopes (the flows were steady). Coulomb friction at the side of the dams is not
observed to affect the characteristics of the shock for the high Froude number flows,

� ��� � 	 �
,

that were studied.
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Figure 29: Non-dimensional run-up profiles for granular flow at
� � � ���

. Each graph is a plot
of the observed depth profile along the deflecting dam, non-dimensionalised with the depth of
the approaching stream, for a fixed deflecting angle, � (

�
). The theoretical non-dimensional

shock height,

�� � 
 �

, is shown as a dashed line. The shocks were unsteady for � �
�
� �

and� � �
where the shock height is drawn as a solid lines.
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Figure 30: Non-dimensional run-up profiles for granular flow at
� � � � 	 �

. Each graph is a plot
of the observed depth profile along the deflecting dam, non-dimensionalised with the depth of
the approaching stream, for a fixed deflecting angle, � (

�
). The theoretical non-dimensional

shock height,

�� ��
 �

, is shown as a dashed line. The shock was unsteady for � � � � �
where

the shock height is drawn as a solid line.
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Figure 31: Non-dimensional run-up profiles for granular flow at
� � � � 	 �

. Each graph is a plot
of the observed depth profile along the deflecting dam, non-dimensionalised with the depth of
the approaching stream, for a fixed deflecting angle, � (

�
). The theoretical non-dimensional

shock height,

�� ��
 �

, is shown as a dashed line. The shock was unsteady for � � � � �
where

the shock height is drawn as a solid line.
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5.3 Results: Catching dams

(a) (b)

(c) (d)

Figure 32: Photographs of granular flow at
��� � � 	 �

, travelling from right to left down a �
� �

incline and interacting with (a) a high catching dam (on the left) and forming a bore that travels
upstream; (b) a lower catching dam,

� ��
 � � 	
� , with some of the flow over-topping the dam

and a stationary bore upstream of the dam; (c) an even lower catching dam,
� ��
 � � 	 �

, where
the stationary bore is closer to the dam; (d) a lower still catching dam,

� � 
 � � 	 	�

�
, where all

of the flow over-tops the dam. Note that the incoming flow is only 0.002 m thick and hardly
visible on the photographs. The dimensions of the larger grid-cells are (

� 
 � ��� � 
 � �
) m.

Experiments with flows at Froude numbers 12 and 14 revealed that granular bores travel-
ling upstream were formed in front of catching dams (see Figure 32). The dilute first front of
the flow splashed higher up on the dams than the granular jump. The angle of repose of the
granular material (ballotini beads) was smaller than the slope of the chute,

� � � 	 � � � �
�
� �

.
The free surface of the stationary material in front of the dam (downstream of the shock) was
intermittently levelled out to the angle of repose of the ballotini beads by thin avalanches on
the free surface, propagating from the start of the bore and down to the catching dam. The
bore slowed down during the upstream propagation, as more material avalanched down to the
dam in order to level out the lengthening free surface of the bore. An upstream propagating
bore was still present in front of the dam, when the height of the dam was lowered, so that
some of the flow over-topped the dam. The bore propagated upstream until the mass flux over
the bore balanced the mass flux over the dam at which point the bore stopped. The distance
travelled upstream by the bore shortened when the dam was lowered, until a granular jump
upstream of the dam disappeared and all of the flow was launched over the dam.

The scenario where a shock is formed upstream of a catching dam and the dam is high
enough so that no part of the flow over-tops is described by equations (3) and (6) when

� � �
.
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Figure 33: The borespeed non-dimensionalised with the speed of the approaching flow,
� � � �

,
plotted as a function of the distance travelled upstream by the bore, � , for

��� � � 	 �
and 14.

The theoretical prediction for material with
� � �

is plotted as a straight line. The observed
bore speed for

� � � � � �
is averaged over the distance indicated by the � -error bars (

�
).

The shock height and the time dependent position of the bore front were accurately predicted
by the theory by using the same density on both sides of the bore,

� � � � �
, see Figure 33.

Gray et al. (2003) have conducted similar catching dam experiments using material with a
larger internal friction angle than the angle of the slope on which their flows take place. They
find that the system of equations referred to above predicts the speed and the depth of the
upstream propagating bore. (Gray et al. furthermore conduct their experiments at slope angles
that balance the basal friction angle of the flow so that gravity does not affect the conservation
of momentum flux over the bore, but they do not comment on the results when gravity is not
matched by Coulomb friction.)

When the catching dam was lower than the shock height, some of the flow over-topped
the dam. The setup is described by the system of equations (7), (8), (10) and (11), for

� � �

and a constant flow state downstream of the shock. For a given approaching flow depth and
speed:


 �
,
� �

, the bore height, bore speed, overflow height and overflow speed:

 �

,
�

,

 � , � � ,

can be determined.
Experiments with flows at

��� � � 	 �
showed that the bores travelled a certain distance

upstream where they then stopped. The flow was in a constant flow state upstream of the shock
and may to some approximation be regarded as being in a constant flow state downstream of
the shock. The shock depth and overflow depth,


 �
and


 � , were well predicted by the theory.
The theory also predicted the position of the stationary bore, see Figure 34. The dam height
leading to no shock formation upstream of the dam was furthermore accurately predicted by
the theory, i.e. the dam height resulting in a computed negative bore speed. The ratio between
the dam height leading to no shock formation and the initial shock height for no overflow was
found to be

� ��
�� � � 
�� �
. Equation (4) with

����� � � � 	
can be used to approximate the dam
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Figure 34: The theoretically predicted bore speed non-dimensionalised with the speed of the
approaching flow,

� � � �
, plotted as a function of the distance travelled upstream by the bore,� , for different dam heights,

�
. The speed

� � �
indicates that the bore has stopped and

the experimental observations of the stopping position of the bore are plotted for the three
different dam heights (

�
). For

� � 
 � � 	 	�

�
, the theory predicts that the bore would only

travel half a millimetre upstream. The theoretical line is therefore not visible on the plot.

height corresponding to no shock formation as a function of the depth of the incoming flow
and the Froude number.

� � � 
�� � 
 � � � 
 � � � � � � � 
 � � 	 	 
 � 


The effect of tilting the upstream face of the catching dam had no effect on the shock
height and bore propagation. It was observed, however, in the experiments that the first front
splashed up higher on the dams than the immediately following shock and the angle at which
the first front took off from the top of the dams coincided with the angle of the upstream dam
face.

We conclude that the shallow-water framework gives accurate predictions of the granular
jumps, while the splash-up of the dilute and compressible first front of the flow onto the dams
remains a subject of future work.
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6 Discussion

The experimental study has considered steady, supercritical flow of water and dry, granular
material interacting with dams. The flows were at different Froude numbers, were of different
physical scales (different flow depth and speed) and took place on steep and shallow slopes.
The experiments revealed that the dry, dense, granular free surface flows scale with the internal
Froude number of the flow as do flows of water. Features such as shocks were observed
upstream of the dams in the granular flows as well as in the water flows. A better agreement
between theory and experiments was obtained for the granular flows if the pressure was taken
to be isotropic and hydrostatic, instead of linking the longitudinal and normal stresses through
an earth pressure coefficient.

Stationary, oblique shocks were formed in the interaction of the flows with deflecting
dams. They were well described by incompressible, shallow-layer shock theory, derived on
a horizontal plane, assuming constant flow states on both sides of the shock. Less intense
wave action and turbulence were observed in the granular flows than in the water, presumably
owing to dissipation in inelastic collisions between grains and this may account for a sharper
transition zone in the granular material. The structure of the granular jumps was not observed
to depend on the Froude number of the approaching flow for the Froude number range that
was studied,

� � � � � � 	 �
, as is the case in hydraulic jumps. Higher run-up than the jump

conditions predicted and turn-over of the flow was observed close to the upstream end of the
deflecting dams for the higher Froude number granular flows and for water flow at the largest
deflecting angles and for all Froude numbers. This effect was more obvious for the water
because of a more turbulent and wider transition zone.

A travelling bore was formed upstream of the catching dams when none of the flow over-
topped the dams. For lower dams with some overflow, a shock could still be observed. As the
height of the dams was gradually lowered, the bores stopped closer to the dams and finally
the flow shot ballistically over the dams in a supercritical flow state and a shock did not
form upstream of the dams. The granular jumps were well described by the shallow-water
jump conditions. The internal friction angle of dry snow is suggested by Salm (1993) to be
close to

��� �
. In most cases avalanche protection dams will be positioned in the run-out zone

of an avalanche path and not at angles steeper than
��� �

. The theoretical consideration for� � �
would therefore in most cases be appropriate for the analysis of snow avalanches. The

snow stopped by a catching dam may furthermore be more densely packed than the flowing
avalanche leading to a density difference over the shock (mostly in the range

	 ��� ��� � � �
� )

and a lower shock height at the dam than for an incompressible jump, such as a hydraulic
jump.

Highly compressible flows with Mach numbers larger than one were not considered in the
experiments (excluding the first front of the flows). There is a possibility that the dense core
of some natural dry-snow avalanches is slightly supersonic (Briukhanov et al., 1967) which
may give rise to the formation of compression shocks in the interaction with dams. Such
compression shocks have been observed experimentally in dilute granular flows (Rericha et
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al., 2002).
The higher splash-up of the first front of the flows onto the catching dams is consistent with

high pressures (impulse pressures) measured during the first few milliseconds of the impact of
an avalanche with a catching dam (Bozhinskiy and Losev, 1998; Schaerer and Salway, 1980;
Kotlyakov, et al., 1977; and Salm, 1964) and also pressure records and observed splash-up of
steep water waves on walls, see Peregrine (2003) for an overview.

The results presented here are a step towards a better understanding of the dynamics of
dense granular flows, such as snow avalanches, that hit deflecting and catching dams. These
results may be used to formulate new design criteria for such dams. They might also be useful
for implementing deflection dynamics in numerical models that could be used to evaluate the
effectiveness of dams as protection measures for settlements, communication lines and other
properties and infrastructure. An important consideration in the application of our results to
pratical design of protection dams is the question of the formation of the shock in the initial
impact with the dam. In order for the shock to form, the flow must undergo a change in flow
state from a supercritical flow to a subcritical flow as it passes over the dam. The presence of
a shock is assumed in the derivation of the theoretical shock relations in section §2. The dam
height needed for a hydraulic jump to occur in the first place will be larger than the theoretical
bore height if the loss of energy across the granular jump is larger than the energy loss in the
impact of the flow with the catching dam. This will, however, not be further discussed here.
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