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1 Introduction
A substantial improvement in the understanding of the flow of snow avalanches against dams
and other obstructions has taken place over the last 5–10 years. This improved understanding
has been achieved by theoretical analyses, chute experiments, numerical simulations with a
new generation of 2D depth-averaged snow avalanche models, and an interpretation of flow
marks of snow avalanches that have hit man-made dams and natural obstructions. This de-
velopment makes it possible to formulate improved design criteria for catching and deflecting
dams based on more advanced dynamic concepts, which solve some of the inconsistencies
that are associated with the traditional criteria for the design of such dams. In spite of this
progress, understanding of the dynamics of the impact of snow avalanches with obstacles
remains incomplete, so that some subjective and partly justified concepts are needed in the
formulation of the new criteria.

This report is intended as background for the formulation of dam design criteria that are
the main content of the SATSIE dam design guidelines/handbook. It is based on discussions
within the SATSIE handbook writing group and on discussions of the group with other scien-
tists in this field. The report contains suggested formulae for the computation of dam height
based on terrain conditions, dam geometry and the velocity and flow depth of the chosen de-
sign avalanche at the location of the dam. Some dynamic background for the formulae is also
given. References are made to reports and papers that have been produced within and outside
of SATSIE, but these are not summarised here so that the reader needs to consult these original
sources for more detailed information.

The traditional design criteria for catching and deflecting dams are based on viewing the
avalanche as a point-mass. As a consequence of this simplification, lateral and longitudinal
interactions between different parts of the avalanche are ignored. Point-mass trajectories cor-
responding to different lateral parts of an avalanche that is deflected by a deflecting dam must
intersect as already deflected material on its way down the dam side collides with material
heading towards the dam farther downstream. Similarly, it is clearly not realistic to consider
the flow of snow in the interior of an avalanche that hits a catching dam without taking into
account the snow near the front that has already been stopped by the dam. The effect of this
interaction on the run-up cannot be studied based on point-mass considerations, and a more
complete physical description of lateral and longitudinal interactions within the avalanche
body during impact with an obstacle must be developed. The simplest such description is
based on a depth-averaged formulation of the dynamic equations for the flow of a thin layer
of granular material down inclined terrain. This description is intended to represent the dy-
namics of the dense core of a snow avalanche, but the saltation and powder components of the
avalanche are neglected.

The depth-averaged formulation cannot represent some processes that may be important
in the flow of snow avalanches against obstacles. Among such processes are splashing during
the initial impact (see Hákonardóttir and Hogg, 2005), overflow of the saltation and powder
components, and the transfer of snow from the dense core into suspension during the impact.
Processes related to two-phase dynamics and air pressure in the interstitial air in the avalanche
that may cause “hydroplaning” or “aeroplaning”, may also be important during overflow, as
well as shearing flow over the dam, where a thick avalanche overflows a dam over a part of
the flow depth. These aspects of the dynamics will not be considered here.
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2 Background

Terrain slope at the dam location in the direction of steepest descent is denoted by ψ and the
slope of the terrain normal to the dam axis by ψ⊥. The (dense core of the) design avalanche
has flow depth h1 and depth-averaged velocity u1 at the dam location (that is directly upstream
of the dam before the dam has any effect on the flow) (see Fig. 1). The shape of the terrain
and the avalanche flow upstream of the dam are assumed to be sufficiently uniform that spatial
variations in ψ, u1 and h1 may be ignored. A sloping coordinate system is aligned with the
terrain upstream of the dam with the x-axis along the flow direction, which is assumed to
be directly in the downslope direction. The y-axis points away from the dam, and the z-axis
points upwards in a direction normal to the terrain (see Fig. 2). The deflecting angle of the
dam is denoted by ϕ and the angle between the upper dam side and the terrain, in the direction
normal to the dam axis, is α. The snow depth on the terrain, hs, is not explicitly considered in
the following discussion and simply added in the end, assuming that hs is sufficiently uniform
in space that this is appropriate.

Flow depth, dam height and run-up on the dam side are here defined in the direction normal
to the terrain upstream of the dam. Vertical dam height and vertical run-up will in general
be slightly different from the corresponding heights measured normal to the terrain. Since
protection dams are typically built in the run-out areas of avalanches where terrain slopes are
small, this difference is not considered explicitly below, and all quantities are expressed in a
coordinate system that is aligned with the terrain (see Fig. 2). When dam heights have been
determined according to the method outlined below, the corresponding vertical dimensions
may be determined from geometrical expressions that transform dimensions normal to the
terrain to vertical dimensions.

The run-up of the avalanche on the dam is sometimes written as hr = hu + h1, where hu
is run-up corresponding to the velocity of the avalanche and h1 is the upstream flow depth.
Here, it is more convenient to consider the combined run-up, hr, rather than the components

Figure 1: Schematic figure of a dry-snow avalanche showing the dense core, the fluidised (saltation)
layer and the powder cloud. The depth-averaged quantities u1 and h1 apply to the dense core in the
sloping x,z-coordinate system. The figure is adapted from Issler (2003).
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Figure 2: Schematic figure of a deflecting dam showing the x,y,z- and ξ,η,ζ-coordinate systems, the
deflecting angle, ϕ, the slope of the terrain, ψ, and the angle between the upper dam side and the
terrain, α. The figure is adapted from Domaas and Harbitz (1998).

hu and h1.
Frictional forces are not considered explicitly in the analysis. However, they are implic-

itly assumed to balance the downslope component of gravity so that the oncoming flow can
be assumed to be non-accelerating and spatially uniform. The role of terrain friction in the
dynamics of an impact of an avalanche with a dam is not well understood, as evidenced by
the fact that the Coulomb friction coefficient µ appears in some expressions for the design
height of dams but not in others. However, one may expect terrain friction to be compar-
atively unimportant in the impact of dry-snow avalanches with dams. For each part of the
avalanche body, the impact does not last long enough for frictional forces to reduce the mo-
mentum of the avalanche significantly. In addition, many dams are located in gently sloping
terrain, where friction is partially balanced by downslope gravity. Assuming that frictional
forces are approximately balanced by downslope gravity may not be realistic in some situa-
tions, in particular for long deflecting dams with acute deflecting angles, where the deflecting
process lasts relatively long for each part of the avalanche body. An analysis of the simplified
situation without friction, does, however, lead to valuable insight into the dynamics of the
impact with a dam. The simplified results may also be expected to provide an upper bound
for design dam height even when friction cannot be neglected.

Entrainment of snow from the snow cover into the avalanche or deposition of snow from
the avalanche onto the terrain is also neglected here. These are poorly understood processes
that may affect avalanche–dam interactions to some degree. In particular, deposition may be
an important process under some circumstances where a part of the avalanche may pile up
in front of a dam and form a platform over which the remainder of the avalanche may flow
and overtop the dam. This aspect of avalanche–dam interactions will, however, not be further
considered in the analysis below.

Many of the above simplifying assumptions may be relaxed in numerical simulations of
the depth-averaged shallow fluid equations with shock-capturing algorithms, where complex
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terrain and dam shapes, and frictional forces and possibly also entrainment/deposition, may
be taken into account (see for example Gray and others, 2003). An insight into the simple
situation analysed here is, nevertheless, useful in the interpretation of results from numerical
simulations. The analytical expressions for dam height that are provided by the simplified
analysis are also useful for developing initial ideas for dam geometry in more complex situa-
tions that can then be refined by numerical simulations.
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3 Supercritical overflow versus a shock
A dry-snow avalanche will typically flow towards a dam in a supercritical state, that is with
a Froude number Fr > 1 (or perhaps greater than some other limit larger than 1, depending
on the rheology; the Froude number is defined in Eq. (4) below). The first determining factor
for the design height of both catching and deflecting dams is that uninterrupted, supercritical
flow over the dam must be prevented. If supercritical overflow is impossible, shallow fluid
dynamics predict the formation of a shock upstream of the dam. This theoretical prediction
has been confirmed for fluid and granular flow in several chute experiments, and may have
been observed for natural snow avalanches. The second criterion for the design height of
avalanche dams is that the flow depth downstream of the shock, must be smaller than the dam
height. These two requirements in combination form the constitute of the design requirements
that are proposed here and they are described in more detail in separate sections below.

The dynamics of the formation of a shock upstream of a dam is not well understood. In
many, but not all, practical cases, the flow depth h2 downstream of the shock is smaller than
the dam height required to prevent supercritical overflow, assuming no loss of momentum
in the impact with the dam. Therefore, if the formation of a shock could be guarantied by
enough momentum dissipation, the dam could be built substantially lower than required for
preventing supercritical overflow. However, there are indications from natural snow avalan-
ches, which have overflowed or scaled high natural terrain obstacles, that avalanches can flow
over dams higher than the flow depth downstream of a shock corresponding to likely values
of the upstream velocity and flow depth. Therefore, it is proposed here to adopt a worst case
scenario, firstly, supercritical overflow must be prevented during the initial interaction such
that a shock may form, and then, overflow downstream of a shock must also be prevented.
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4 The dynamics of flow against catching and
deflecting dams

There is an obvious difference between the flow of avalanches against catching and deflecting
dams that hides a fundamental dynamic similarity. This similarity partly shows up in the
traditional expressions for the kinetic energy component of the vertical run-up above the snow
cover, r, on dams in the design of catching and deflecting dams (Margreth, 2004)

r = h1 +
(u1)2

2gλ
= h1(1+

1
2λ

Fr2 cosψ) , (1)

for catching dams, and

r = h1 +
(u1 sinϕ)2

2gλ
= h1(1+

1
2λ

(Fr sinϕ)2 cosψ) , (2)

for deflecting dams (the kinetic energy component is the second term on the right hand sides
of the equations). The so-called λ-factor in these equations represents loss of kinetic energy in
the interaction with the dam beyond the potential energy needed to scale the dam. These equa-
tions indicate that a deflecting dam is equivalent to a catching dam being hit by an avalanche
with a velocity equal to the component of the velocity normal to the dam axis. The equations
have an intuitively clear meaning for dams on horizontal terrain in terms of the kinetic and
potential energy of a point-mass that moves over the dam. In that case, the vertical run-up, r,
is equal to the run-up normal to the upstream terrain, hr, in the notation of this report. How-
ever, for dams on sloping terrain, the equations do not have a similarly clear interpretation.
This is evidenced by the fact that there are “potential streamlines” along the side of deflecting
dams in sloping terrain that maintain the same altitude. If avalanches could flow along such
streamlines, they would be able to overflow the dam without any loss of kinetic energy due to
the scaling of the dam.

If friction is approximately balanced by downslope gravity as discussed above, the contact
between the terrain and the bottom of the avalanche may be assumed to transmit only normal
forces (within the framework of the depth-averaged description). Relative motion between
the avalanche and the terrain, parallel with the terrain, has then no influence on the flow of the
avalanche. This will be approximately true for regions with sharp gradients in the flow such
as shocks, even when friction has some effect, if particles flow through the region in a very
short time interval, compared with the time needed for frictional forces to have significant
effect on the momentum of the flow. The conservation equations for mass and momentum
for shallow fluid flow are equally valid in a uniformly moving coordinate system under these
conditions. Let a ξ,η,ζ-coordinate system be defined such that the ξ-axis is aligned with
the axis of a deflecting dam, the η-axis points in the direction normal to the dam axis in
the upstream direction, the ζ-axis in the direction normal to the terrain as the z-axis, and the
origin moves along the dam axis with speed u1 cosϕ (see Figs. 2 and 3). It is easy to show that,
for supercritical flow over the dam, the dynamics in the ξ,η,ζ-coordinate system are exactly
equivalent to normal flow with uniform velocity u1 sinϕ towards a catching dam. This fact
may be used to express the criterion for supercritical overflow over a catching dam, in a form
suitable for a deflecting dam.

The shock relations for a stationary, oblique hydraulic jump upstream of a deflecting dam
may be similarly shown to be equivalent to a moving normal shock above a catching dam to
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Figure 3: Schematic figure of an oblique shock above a deflecting dam showing the deflecting angle,
ϕ, the shock angle, θ, their difference ∆ = θ−ϕ, and the x,y-, ξ,η- and s,n-coordinate systems.

a very good approximation. This shows that avalanche flow against catching and deflecting
dams are dynamically similar in a fundamental sense. This has the practical implication that
theoretical derivations and results of laboratory experiments for catching dams may be used
to improve design criteria for deflecting dams and vice versa.
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5 Supercritical overflow: Hcr +hcr

The height at which the avalanche changes from a supercritical flow state to a subcritical
state when it hits a dam is here termed critical dam height and denoted by Hcr (Fig. 4). It
can be derived from a conservation equation for the energy of the flow over the dam (see
Hákonardóttir, 2004), which is valid if friction is balanced by gravity and as long as no shocks
are formed,

Hcr/h1 =
1
k

+
1
2
(k Fr sinϕ)2− 3

2
(Fr sinϕ)2/3 . (3)

The critical dam height is the maximum height of a dam over which supercritical flow may be
maintained. The Froude number is defined as

Fr =
u1√

gcosψh1
, (4)

in terms of the velocity and flow depth of the oncoming flow. The coefficient k represents the
loss of momentum normal to the dam axis in the impact and is discussed in Section 8 below.
The momentum loss specified by k is only meaningful for dams that are higher than several
times the upstream flow depth h1. In the derivation of Equation (3), the momemtum loss is
assumed to take place immediately as the flow crosses the foot of the dam.

The flow depth at height Hcr, above the snow cover at the base of the dam, here termed
critical flow depth (Fig. 4), is given by

hcr/h1 = (Fr sinϕ)2/3 . (5)

The flow changes from a supercritical state to a subcritical state at the height Hcr, where
the flow depth is hcr, and the surface of the flow is at height Hcr + hcr above the snow cover.
If the dam height above the snow cover is lower than Hcr, the main core of avalanche may
overflow or “jump” over the dam in a supercritical state, and if the dam height is lower than
Hcr + hcr, the front of the avalanche may partly overflow the dam, while a shock is being
formed. To prevent such overflow the dam height above the snow cover should be larger than
Hcr +hcr, which is given by

(Hcr +hcr)/h1 =
1
k

+
1
2
(k Fr sinϕ)2− 1

2
(Fr sinϕ)2/3 , (6)

Figure 4: Schematic figure of supercritical overflow showing the critical dam height Hcr and the
critical flow depth hcr.
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according to Equations (3) and (5).
The requirement expressed by Equation (6) may perhaps lead to some overdesign because

a dam height of Hcr above the snow cover should be enough to form the shock. Overflow
should then only occur temporarily and the bulk of the avalanche should be stopped or de-
flected. If some overflow can be tolerated, for example if the protected area is some distance
away from the dam, it may be possible to require a dam height of only Hcr above the snow
cover rather than Hcr + hcr. It should, however, be borne in mind that overflow may occur
in the initial impact of the avalanche front with the dam due to splashing for a dam height
of Hcr + hcr, so that even this dam height may not prevent some overflow of the dense core
during the initial impact. In addition, some overflow will occur over most avalanche dams
due to the saltation and powder components if the dams are hit by large avalanches. Whether
Hcr or Hcr +hcr is the most appropriate dam height cannot be decided without more detailed
understanding of the dynamics of the initial impact with the dam. Here, the more conservative
choice is made and Hcr +hcr is adopted as a minimum dam height.

Equation (6) may be rewritten in dimensional form as

Hcr +hcr =
h1

k
+

(u1 sinϕ)2

2gcosψ
k2(1− k−2(Fr sinϕ)−4/3) , (7)

which facilitates comparison with the traditional dam height expressions (1) and (2).
If a “Froude number” normal to the dam axis, Fr⊥, is defined as

Fr⊥ = Fr sinϕ =
u1 sinϕ√
gcosψh1

=
|uη|√

gcosψh1
, (8)

one may rewrite Equation (6) as

(Hcr +hcr)/h1 =
1
k

+
1
2
(k Fr⊥)2− 1

2
(Fr⊥)2/3 , (9)

which shows that the same fundamental expression, in terms of the component of the velocity
normal to the dam axis, uη = u1 sinϕ, may be used for both catching and deflecting dams. The
equations are based on an assumption of energy conservation of the flow over the dam. The
equations are thus only valid while the flow hitting the dam is supercritical and no shocks are
formed, i.e. (k3/2 Fr⊥) > 1.

Figure 5 shows the run-up for a deflecting dam according to Equation (6) as a function
of the deflecting angle, ϕ, for several values of the upstream Froude number, Fr, and the run-
up for a catching dam as a function of Froude number, Fr, (solid curves). The figure also
shows run-up according to the traditional formula for the height of deflecting dams, Equation
(2), with λ = 1 (dashed curves). The lowering of the run-up derived from Equation (6),
with respect to the corresponding run-up according to the traditional formula, is due to the
thickening of the flow as it overflows the dam and the requirement that the overflow must be
supercritical, which leads to a minimum flow velocity at the top of the dam. The resulting
reduction in the required dam height is largest in a relative sense for low Froude numbers and
low deflecting angles.

Equations (6) and (7) are similar in form to the traditional formulae (1) and (2), for the
height of catching and deflecting dams above the snow cover, if the λ-factor is defined as

λ = cosψ

(
k2(1− k−2Fr−4/3

⊥ )+
2
k

(1− k)Fr−2
⊥

)−1

. (10)
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Figure 5: Supercritical run-up, (Hcr + hcr)/h1, according to Equation (6), for a deflecting dam (left)
as a function of deflecting angle and Froude number, and for a catching dam (right) as a function of
Froude number, assuming no momentum loss in the impact (k = 1) (solid red curves). Dashed curves
show run-up according to the traditional formulas for the height of avalanche dams (above the snow
cover), Equations (1) and (2), for horizontal terrain (ψ = 0), also for no friction and no momentum loss
in the impact (λ = 1). The curves for the deflecting dam are labelled with the Froude number Fr.

This expression predicts a λ-factor that changes from λ ≈ 1.1 for Fr⊥ in the range 5–10,
to λ = 1.3 for Fr⊥ = 3, and λ = 1.6 for Fr⊥ = 2 (assuming horizontal terrain (cosψ = 1)
and no momentum loss in the impact (k = 1)). It thus requires somewhat lower dam heights
compared with the traditional design expressions as Fr⊥ decreases. Deflecting dams with low
deflecting angles sometimes correspond to quite low values of Fr⊥, even lower than 2. Then
the dam height required by Equation (6) becomes quite low and the λ-factor may in this case
be unexpectedly high. However, the requirement derived from flow depth downstream of the
shock described in the next section will in this case be the determining factor for the design
dam height.

Supercritical flow over dams was considered by Hungr and McClung (1987) and Chu
and others (1995), who used a formula derived by Takahashi and Yoshida (1979) to propose
an equation for the run-up of snow avalanches on dams, which they call the “leading-front
model”. Their equation predicts higher run-up on catching dams than the traditional dam
height formula (1) in contrast to Equation (6). A detailed comparison of their derivation with
a derivation based on energy conservation of supercritical flow without shocks shows that,
although these authors state that supercritical flow is a condition for the validity of their model,
they don’t actually use this condition. In addition, they don’t properly take the thickening of
the flow as it flows up the dam side into account. Thus, the run-up predicted by the leading-
front model can only be realised if the avalanche violates the assumptions that are stated in
the derivation of the model. If the assumption of supercritical flow and the thickening of the
flow are properly taken into account in the derivations of Hungr and McClung (1987) and Chu
and others (1995), their analysis may be shown to be essentially equivalent with the dynamics
underlying Equation (6).
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6 Upstream shock: h2

If the dam is high enough to prevent supercritical overflow, a propagating normal shock will
form upstream of a catching dam and a semi-stationary, oblique shock may form upstream of
a deflecting dam. The velocity and flow depth will change discontinuously across the shock
according to the depth-averaged dynamics.

The conservation equations for mass and momentum for shallow, incompressible flow in
2D may be shown to lead to the following jump conditions across the shock (Whitham, 1999)

− [[h ]]c+[[hu ]] ·n = 0 (11)

and

− [[hu ]]c+
[[

huu+
1
2

gcosψh2I

]]
·n = 0 , (12)

where the brackets are used to express the discontinuity in a quantity across the shock, for
example [[h ]] = h2− h1, with the subscripts 1 and 2 denoting the upstream and downstream
sides, respectively. n is a unit normal vector to the shock pointing in the direction of movement
of the shock or in the upstream direction if the shock is stationary, s is a unit vector parallel to
the shock (to be used below), and c is the propagation speed of the shock in the direction of
n (see Fig. 3). uu denotes the tensor product of u with itself, which is sometimes denoted by
u⊗u, and I denotes the unit tensor. If the jump conditions are expressed in a reference frame
that moves with the shock, so that the shock is stationary in this frame and thus c = 0, they
state that the component of the flux normal to the shock, is continuous across the stationary
shock.

In a frame of reference moving with the shock, the jump conditions (11) and (12) simplify
to

h1un1 = h2un2 , (13)

h1un1un1 +
1
2

gcosψh2
1 = h2un2un2 +

1
2

gcosψh2
2 , (14)

and
h1us1un1 = h2us2un2 , (15)

where un = u ·n and us = u · s are the components of the velocity normal and parallel to the
shock, respectively, in the moving reference frame. These expressions are equally valid for
shocks above catching and deflecting dams. Equations (13) and (14) may be shown to lead to
the traditional equation for the height of a hydraulic jump (Chow, 1959)

(h2/h1)2 +(h2/h1)−2Fr2
n = 0 , (16)

where Frn = |un|/
√

gcosψh1 is the Froude number of the flow normal to the shock in the
moving frame of reference where the shock is stationary. This equation has the well known
solution

h2

h1
=

1
2
(
√

1+8Fr2
n − 1) . (17)

The hydraulic jump solution cannot, however, be applied directly to shocks above catching
and deflecting dams because the normal velocity, un, in the moving reference frame, which is
used in the definition of Frn, depends on the speed of the shock, c, which is unknown and must
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be determined as a part of the solution. Equation (15) is not needed much in the following
analysis because the moving reference frame can, for both catching and deflecting dams, be
chosen so that the component of the velocity parallel with the shock is identically equal to
zero.

For a shock propagating upstream from a catching dam (with no overflow), the velocities
in the reference frame moving with the shock, un1 and un2 , may be written in terms of the
original velocities, u1 and u2, and the shock speed, c, as un1 = u1 +c, un2 = u2 +c = c. Using
this, the shock condition (13) can be used to express the Froude number in the moving frame,
Frn, as

Fr2
n = (h2/(h2−h1))2Fr2 . (18)

The hydraulic jump equation (16) can then be reformulated as

(h2/h1)3− (h2/h1)2− (1+2Fr2
⊥)(h2/h1)+1 = 0 , (19)

in terms of the original Froude number in the non-moving reference frame (Fig. 3). The
Froude number is here denoted by Fr⊥ = Fr sinϕ = Fr sin90◦= Fr, rather than Fr, because this
equation is also approximately valid for deflecting dams as will be shown below. Equation
(19) assumes no change in the density of the flowing material as it comes to rest by the dam
on the downstream side of the shock. A more general relationship, where a change in density
may take place as the flow comes to rest above the dam, is given by Hákonardóttir (2004).

The shock relations for an oblique shock above a deflecting dam may be similarly derived
by considering the equivalent, stationary, normal shock in a coordinate system, s, n, which is
rotated by the shock angle, θ, with respect to the upstream flow direction (see Fig. 3), and
moving with velocity u1 cosθ along the line defined by the shock (Chow, 1959; Whitham,
1999). This leads to the shock relations

u2

u1
=

cos(ϕ+∆)
cos∆

,
h2u2

h1u1
=

sin(ϕ+∆)
sin∆

,
h2

h1
=

tan(ϕ+∆)
tan∆

, (20)

where ∆ = θ−ϕ is the widening of the shock along the dam. The first relation expresses
the requirement that the velocity component us in the direction parallel with the shock in
the moving frame of reference must be identically equal to zero, because the dynamics in
the moving frame are equivalent to a normal shock, where there is no flow in the direction
parallel with the shock. This is equivalent to requiring the component of the velocity parallel
to the shock in the non-moving reference frame to be continuous across the shock, which also
follows from the jump condition (15) in combination with (13). The second relation is derived
from the jump condition (13), which expresses the continuity of the mass flux across the shock
and the last relation follows from the other two. Finally, the hydraulic jump condition (16),
with Frn = Fr sinθ = Fr sin(ϕ+∆), must be satisfied. Combining the last relation in (20) with
the hydraulic jump solution (17), this leads to the following equation for ∆

tan∆ =
2tan(ϕ+∆)√

1+8Fr2 sin2(ϕ+∆) − 1
=

2tan(θ)√
1+8Fr2 sin2(θ) − 1

. (21)

This equation is an implicit equation for ∆ in terms of ϕ and Fr, and may, together with the
last shock relation in (20), also be considered an implicit equation for h2/h1 in terms of ϕ for
a given value of Fr. Figures showing θ, ∆ and h2/h1 as functions of ϕ and Fr are given by
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Hákonardóttir (2004) and Hákonardóttir and Hogg (2005). A derivation of the oblique shock
relations (20) and a traditional somewhat more complex expression for θ in terms of ϕ and Fr,
which is equivalent to (21), together with procedures to solve them graphically, are described
by Chow (1959).

The close dynamic similarity of a propagating normal shock upstream of a catching dam
and an oblique shock upstream of a deflecting dam may be analysed by considering the flow
in the ξ,η-coordinate system, which is rotated by the deflecting angle, ϕ, with respect to the
upstream flow direction (see Fig. 3). This is the same system as used in the previous section
to analyse supercritical overflow, except that now the system is assumed to move parallel to
the axis of the dam with speed equal to the velocity downstream of the shock, u2. In this
coordinate system, the speed of the oncoming flow towards the dam, normal to the dam axis,
is given by |uη|= u1 sinϕ, and the material comes to an abrupt halt downstream of the shock,
exactly as for a catching dam. The only difference is that the shock moves away from the dam
at a small angle, ∆, from the direction normal to the axis of the dam, and the flow direction
upstream of the shock also deviates from the direction normal to the dam by ∆. The angle ∆

is in practice comparatively small for deflecting dams, and this difference enters the dynamic
equations as second order terms in ∆ such as sin2

∆ and (cos∆−1). Therefore, the dynamics
of avalanche flow towards a deflecting dam are to a good approximation equivalent to the dy-
namics of normal flow towards a catching dam with speed u1 sinϕ. This means that the flow
depth h2 downstream of the shock my be found from Equation (19) with Fr⊥ = Fr sinϕ. Equa-
tion (19) is a third degree polynomial equation in h2/h1, which may be solved with Cardano’s
method (see for example “http://en.wikipedia.org/wiki/Cubic_equation”). In this
case, it has only one physically meaningful solution, which is given by

h2/h1 = (2
√

(6Fr2
⊥+4) cosδ+1)/3 , (22)

where δ is defined as

δ =
1
3

π

2
− tan−1

 9Fr2
⊥−8

Fr⊥
√

27(16+13Fr2
⊥+8Fr4

⊥)

 . (23)

Having found the downstream shock flow depth from these equations, the angle ∆ may be
found to the same approximation from the last shock relation in (20) as

∆ =
cosϕsinϕ

cos2 ϕ(h2/h1)−1
, (24)

from which the shock angle θ = ϕ+∆ may also be found.
Figures 6 and 7 show the shock angle, θ, and the downstream flow depth, h2, as functions

of the deflecting angle, ϕ, for fixed values of the Froude number, Fr. The figures show both
the exact oblique shock solution (20) and (21) (thin solid and dashed curves), and the explicit,
approximate solution given by Equations (22) to (24) (thick curves) derived from the normal
shock relation (19) with the Froude number Fr⊥ = Fr sinϕ. Figure 6 shows that two shock
angles are possible for each pair of values of the deflecting angle and the Froude number. The
shocks corresponding to the smaller and larger deflecting angle are called “weak” (thin solid
curves) and “strong” (thin dashed curves) shocks, respectively (Chapman, 2000). The flow
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Figure 6: Shock angle θ as a function of deflecting angle ϕ for an oblique shock. Thin solid (weak
shock) and dashed (strong shock) curves show the shock angle given by the oblique shock relations (20)
and (21). Thick green curves show the results given by the approximate solution defined by Equations
(22) to (24). The curves are labelled with the Froude number Fr and the ×-symbols show the values of
the deflecting angle at which the flow downstream of the shock becomes critical.
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Figure 7: Flow depth downstream of an oblique shock for a deflecting dam (left) as a function of
deflecting angle and Froude number, and for a catching dam (right) as a function of Froude number.
Thin solid (weak shock) and dashed (strong shock) curves show the solutions given by the oblique
shock relations (20) and (21). Thick green curves show the results given by the approximate solution
defined by Equations (22) and (23). The curves for the deflecting dam are labelled with the Froude
number Fr and the ×-symbols show the values of the deflecting angle at which the flow downstream
of the shock becomes critical.

downstream of a strong shock is subcritical, but supercritical downstream of a weak shock,
except in a narrow range close to the transition between the weak and strong shocks (see Figs.
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Figure 8: Maximum deflecting angle of an attached, stationary, oblique shock. The thick green curve
shows the approximate solution defined by Equation (25).

6 and 7). The strong shock does typically not occur in real fluid or granular flow, but it has
recently been observed experimentally in chute experiments with granular flow by adjusting
the downstream flow conditions below the lower end of the dam (Xinjun Cui and Nico Gray,
personal communication). The normal shock approximation given by (22) to (24) only gives
the solution corresponding to the weak shock. Figures 6 and 7 show that the normal shock
dynamics provide a good approximation to the exact oblique shock solution for Fr≥ 2.5 and
deflecting angles, ϕ, somewhat below the boundary between the weak and strong shocks (cf.
Figs. 6 and 7). Thus, the normal shock approximation more or less covers the range in Fr and
ϕ that is relevant for deflecting dams.

For each value of the Froude number, Fr, an attached, stationary, oblique shock is not
dynamically possible for deflecting angles, ϕ, larger than a maximum, ϕmax, which represents
the boundary between the weak and strong shocks in Figures 6 and 7. The deflecting angle
corresponding to this maximum may be approximately evaluated as (Hákonardóttir and Hogg,
2005)

ϕmax =
π

2
− 23/4

Fr1/2 −
21/4

6Fr3/2 + O
(

1
Fr5/2

)
. (25)

The maximum deflecting angle derived from Equation (21) (black curve) and approximately
by Equation (25) (green curve) is shown as a function of the Froude number Fr in Figure 8.
Chute experiments with granular materials indicate that an attached, stationary shock may
perhaps not be maintained for deflecting angles close to the theoretical maximum, ϕmax.
Therefore, it is recommended here that dam deflecting angles should be at least 10◦ lower
than ϕmax. An avalanche hitting a dam with a deflecting angle ϕ that does not satisfy this
requirement may not remain attached and start to propagate upstream to form a detached,
semi-stationary shock (Chapman, 2000). The detached shock will form a larger angle with
respect to the oncoming flow than an attached shock and, therefore, the jump in flow depth
across the shock will also be larger. It is recommended here that the downstream shock depth
for a dam that does not satisfy the above requirement for an attached, semi-stationary, oblique
shock be computed as for a catching dam with ϕ = 90◦. The criterion based on supercritical
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Figure 9: A granular avalanche with Fr ≈ 13.5 hitting a deflecting dam with φ = 20◦ in a laboratory
chute at the Hydraulics and Environmental Engineering Dept. of the University of Pavia.

overflow is, however, computed with the original value of ϕ as before (see Section 5).
The similarity of the normal and oblique shock dynamics, which is evident from Figures

6 and 7, is also manifested in results of laboratory experiments in chutes of various sizes. The
interaction of granular avalanches and water flows with deflecting dams near the upstream
end of the dam is characterised by an adjustment region (see Hákonardóttir and Hogg, 2005),
within which the normal distance to the dam is less than the width of the transition region
between the two flow states farther downstream. Within this region, the continuation of the
surface of the oncoming flow may be clearly distinguished as the flow overturns and falls
back on itself (see Fig. 9), and the run-up on the dam can be higher than farther downstream,
particularly for high Froude numbers and large deflecting angles. If this adjustment region
is viewed from a coordinate system moving downstream parallel with the dam as described
above, then this region is, apart from splashing in the impact, dynamically equivalent to the
initial impact of an avalanche with a catching dam during the formation of the normal shock,
which is often characterised by similar backwards rotation in the flow.

As for the dam height expression derived from the analysis of supercritical overflow in the
previous section, flow depth derived from the shock relations (20) and (21), or from Equations
(22) and (23), may be compared with the traditional dam design formulae (1) and (2). By
solving Equations (22) and (23) for λ and substituting r by h2 one obtains the following
expression for the λ-factor

λ =
h1Fr2

⊥ cosψ

2(h2−h1)
. (26)

This equation may be used to compare the results of the traditional formulae with the results
derived from shock dynamics.

Shallow fluid shock theory has not been applied to the design of avalanche dams until
recently. This theory has, on the other hand, been applied in hydraulics for many decades and
it is the basis of the design of numerous hydraulic structures of different types and scales (see
for example Chow, 1959; Hager, 1992). The theory has in this context been thoroughly veri-
fied for fluid flow. Somewhat unexpectedly, recent chute experiments indicate that the shallow
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fluid shock theory provides an even better approximation to granular flows than to fluid flows,
for which the theory was originally developed (see Hákonardóttir and Hogg, 2005). This
arises because of rapid frictional dissipation in the interaction between grains that can occur
in shocks in granular media, which appears to be a more efficient dissipation mechanism than
fluid friction. Transition zones with deviations from the theoretically predicted discontinu-
ities in velocity and flow depth are, therefore, narrower in granular flows than in fluid flows.
There are of course many aspects of snow avalanche dynamics that are not adequately de-
scribed by shallow fluid dynamics applied to the dense core as mentioned in the Introduction
and Background sections. Nevertheless, it is clear from the theoretical and experimental stud-
ies that have been summarised here that dam height requirements derived from shallow fluid
dynamics should be viewed as minimum requirements for avalanche dams.
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7 Comparison with traditional design formulae

The λ-factors defined in Equations (10) and (26) are shown in Figure 10 in order to compare
the design criteria based on supercritical overflow (red curves, decreasing λ-factor from left
to right) and shock dynamics (green curves, increasing λ-factor from left to right) with the
traditional design formulae for avalanche dams (1) and (2). Solid curves indicate the combined
design criteria corresponding to the higher of the two dam height requirements in each case.
As before, horizontal terrain (ψ = 0) and no momentum loss in the impact with the dam for
supercritical overflow (k = 1) are assumed. Momentum loss in the impact will be discussed
in Section 8.

A λ-factor equal to 1 corresponds to dam height identical to the traditional formulae, λ < 1
means that the new criteria require higher dams than the traditional ones, and λ > 1 means
that the new criteria lead to lower dams than before. Figure 10 (right) shows that supercritical
run-up is the determining factor for the dam height for Froude numbers above a certain value
of Fr, which depends on the deflecting angle, at which there is a kink in the thick curves
(at the point where the color of the thick curve changes from green to red). Flow depth
downstream of the shock determines the dam height for lower Froude numbers. Compared
with the traditional design formulae, supercritical overflow becomes less important for low
Froude numbers and low deflecting angles, whereas the reverse it true for overflow due to
flow depth downstream of the shock by the dam. When the combined criteria (thick curves)
are considered, the main difference with respect to the traditional formulae is that considerably
higher dams are required for low deflecting angles at relatively low Froude numbers. As an
example, deflecting dams with ϕ = 20◦ corresponding to Fr = 5, or ϕ = 10◦ and Fr = 10,
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Figure 10: The λ-factor as a function of ϕ (left) and Fr (right) corresponding to both supercritical
overflow (red curves) and shock dynamics (green curves). The curves are drawn for horizontal terrain
(ψ = 0) and assuming no momentum loss in the impact (k = 1). The part of each pair of curves for
the same Froude number (left) or deflecting angle (right) corresponding to the lower λ-factor (larger
dam height) is drawn as a solid thick curve. The curves in the figure to the left are labelled with the
Froude number and with the deflecting angle in the figure to the right. The curves for deflecting dams
derived from oblique shock dynamics (green) only show λ-factors corresponding to ϕ < ϕmax, where
an attached, stationary, oblique shock is possible.
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need to be built approximately one third higher according to the new criteria compared with
the traditional formulae. This is, however, not as significant a change as it seems at first sight,
because the run-up component of the dam height is much smaller for these combinations of ϕ

and Fr than for larger deflecting angles. The difference between the new and old criteria may,
for example, lead to an increase in run-up, hr, above the snow cover from 6–8 m to 9–10 m.
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8 Loss of momentum in the impact with a dam: k

The discussion has so far assumed no loss of momentum (or equivalently kinetic energy) in
the impact with the dam (k = 1 in Equations (6) and (7)). This is a worst case scenario and
leads to the highest dams. It is a pessimistic design assumption where the flow of granular
material is forced to change direction abruptly. Chute experiments with granular materials,
including a few experiments with snow (Hákonardóttir, 2004, section 6.4; Hákonardóttir and
others, 2003), indicate that a substantial reduction in flow velocity occurs in the impact with
steep catching dams that are overflowed by avalanches. This reduction is beyond the reduction
in kinetic energy corresponding to the potential energy needed to overflow or scale the dam.
These experiments indicate that approximately 50%, or even more (see Hákonardóttir and
others, 2003), of the kinetic energy of a granular avalanche is lost in an impact with dams that
are positioned normal to the bottom of the experimental chute and have heights greater than
2 to 3 times the flow depth. Furthermore, dams that have steep upstream faces with α ≥ 60◦

seem to be as, or almost as, efficient energy dissipators as dams with upstream faces normal to
the terrain, at least for the granular material that was used in these experiments (glass beads).
Dams with α = 30◦ were, on the other hand, found to be less efficient. These results provide
an estimate of the velocity reduction that takes place as a consequence of the abrupt change
in flow direction at the upstream foot of a dam. As such, they can be used to estimate the
relative reduction in velocity between the oncoming flow and the avalanche as it flows up
the dam side after leaving the impact region at the bottom of the dam. There is, however, a
considerable uncertainty applying the results to natural-scale snow avalanche defence dams.
The chute experiments indicate a somewhat greater reduction in velocity than can easily be
reconciled with some field observations of run-up of snow avalanches on dams and obstacles
in the natural terrain (see discussion at the end of the section). They are, however, the only
available direct evidence on the basis of which values of k can be estimated.

It is important to note that the choice of k only affects the run-up requirement correspond-
ing to supercritical overflow (Eq. (6)). The dam height requirement arising from the flow depth
downstream of the shock is not affected by the choice of k. In fact, chute experiments have
shown that the flow depth downstream of the shock for deflecting dams with sloping sides
(α < 90◦) is the same as for steep dams (see Hákonardóttir, 2004). Therefore, the change in
the required dam height by adopting a value of k < 1 is most important for catching dams, but
the design height of deflecting dams is much less affected.

The λ-factor in the traditional design formula for catching dams (1) has often been chosen
approximately 1.5 for catching dams built from loose materials with a slope of the upstream
side close to 1:1.5 (α = 34◦ on horizontal terrain), and approximately 2 for steep dams with
a reinforced upstream side with a slope greater than 2:1 (α = 63◦ on horizontal terrain). For
deflecting dams, it is often assumed that λ = 1, that is no loss of momentum in the impact.
These λ-values for catching dams are in rough agreement with the results of the chute exper-
iments described above. The λ-value 1.5 corresponds to k ≈ 0.85, for catching dams from
loose materials with a slope of 1:1.5, and λ = 2 corresponds to k ≈ 0.75, for steep catching
dams with a slope of 2:1 or greater, in the dam height expression (6). These values take into
account the effect of the thickening of the flow during run-up, which leads to λ > 1 according
the supercritical overflow criterion, even when k = 1 (see Fig. 10).

Momentum loss in the impact is not well understood dynamically, so not much guidance
for the determination of k can be obtained from theory. The approximate dynamic equivalence
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Figure 11: Momentum loss factor k as a function of dam angle α according to Equation (27). k is not
defined for α < 30◦.

of catching and deflecting dams, which was discussed in the previous section, indicates, how-
ever, that the momentum loss should be applied to both catching and deflecting dams. On the
basis of the chute experiments described above and based on observations of run-up of natural
snow avalanches (see below), it is proposed here that, for dry-snow avalanches, k = 0.75 is
used for dams with α > 60◦, and k = 0.85 for dams with α = 30◦, with a linear interpolation
for slopes between these points. This variation of k is expressed with the following equation

k = 0.75 for α > 60◦ , k = 0.75+0.1(60◦−α)/30◦ for 30◦ ≤ α≤ 60◦ , (27)

and shown graphically in Figure 11. Dams with side slopes lower than α = 30◦ should, in
general, not be built, so that it is not necessary to choose k for lower values of α.

The above recommended values of k are intended for dry-snow avalanches. Similar, ex-
plicit, recommended values of k for wet-snow avalanches are not given here and need to be
decided on a case-by-case basis. There may be less energy dissipation at the foot of the dam
for wet-snow avalanches due to the greater cohesion of wet snow compared with dry snow
and, therefore, a k value equal to 1 would perhaps be an appropriate conservative choice.
Since wet-snow avalanches tend to move slower than dry-snow avalanches, avalanche speed,
and thus the choice of k, is not a determining factor for the dam height in many cases. Flow
depth of wet-snow avalanches downstream of a shock formed along a damside (to the ex-
tent that such a shock is formed) may be expected to be governed by the same dynamics as
for dry-snow avalanches so the requirements arising from shock dynamics should be equally
valid for wet- and dry-snow avalanches and should be considered to provide a lower bound
on the dam height. Explicit dam height recommendations for wet-snow avalanches are not
developed here from dynamic principles but qualitative recommendations for dams intended
as protection agains wet-snow avalanches are given in the SATSIE handbook.

Figure 12 shows λ-factors derived for momentum loss in the impact with the dam cor-
responding to the chosen values of k = 0.85 (dams of loose materials) and k = 0.75 (steep
dams). Comparison with Figure 10 shows that the curves derived from supercritical overflow
have been shifted upwards so that the run-up height is now determined by the flow depth
downstream of the shock for a larger range of Froude numbers. The curves derived from
shock dynamics are, however, not changed from Figure 10. In the most relevant range of
Froude numbers for snow avalanches, 5 ≤ Fr ≤ 10, the height of deflecting dams built from
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Figure 12: The λ-factor as a function of Fr for given values of ϕ, assuming momentum loss in the
impact with the dam with k = 0.85 (left, corresponding to dams built from loose materials) and k = 0.75
(right, corresponding to steep dams). The figures show curves derived from both supercritical overflow
(red curves) and shock dynamics (green curves). See the caption of Figure 10 for further explanations.

loose materials (k = 0.85) is primarily determined by shock dynamics for deflecting angles
ϕ < 25◦. For deflecting angles in the range 25≤ ϕ≤ 35–40◦, both supercritical overflow and
shock dynamics are important, depending on the Froude number. Higher deflecting angles
than 35–40◦ are most often not compatible with the requirement that ϕ should be at least 10◦

below ϕmax.
Figure 13 shows a comparison of the run-up expressions derived from supercritical over-

flow (with k according to Eq. (27) for paths with an abrupt change in slope at the foot of the
obstacle) and the flow depth downstream of a shock with field observations of run-up of 22
natural snow avalanches in Norway, Iceland and France on dams and terrain obstacles. These
field observations are further described in Section 14 and in the references quoted in the figure
caption. Many of the obstacles are situated on rather steep terrain where there is a significant
difference between run-up normal to the upstream terrain (here denoted by hr) and vertical
run-up (here denoted by r and traditionally measured in a vertical cross section normal to
the dam axis in the map plane). The figure shows vertical run-up since this is the quantity
reported in reports about the avalanches. The theoretically predicted run-up normal to the ter-
rain has been transformed to the corresponding vertical run-up (see expressions in the section
about these avalanches below). The flow depth, h1, and velocity, u1, of the oncoming flow
are unknown for all the avalanches and must be considered quite uncertain. The velocity was
estimated by modelling and the flow depth subjectively, with some assistance from modelling
for some avalanches. In order to highlight the uncertainty due to these estimates, the model
results are depicted as ranges corresponding to subjectively chosen ranges in h1 (most often
1–3 m) and u1 (±15%) rather than as single values. The figure clearly shows that the ranges
in computed run-up corresponding to “moderate” variations in h1 and u1 are quite large.

The run-up of several of the avalanches is higher than the theoretically predicted run-up
ranges, but many of them fall within the predicted ranges as further discussed in the section
about the run-up data set. Momentum loss in the impact is only assumed for paths with an
abrupt change in slope at the foot of the obstacle (marked with “(*)” in legend of Figure
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Figure 13: Run-up of natural snow avalanches in Norway (Harbitz and Domaas, 1997; Domaas and
Harbitz, 1998; Harbitz, Domaas and Engen, 2001; Harbitz and Domaas, in prep.), Iceland (Jóhannes-
son, 2001) and France (Mohamed Naaim and Francois Rapin, personal communication 2006) on dams
and terrain features compared with results of the run-up expressions derived from supercritical over-
flow (Eq. (6) with k determined from Eq. (27) for the avalanches where momentum loss in the impact
is assumed) and the flow depth downstream of a shock (Eqs. (22) and (23)). Momentum loss in the
impact with the obstacle is only assumed for paths with an abrupt change in slope at the foot of the
obstacle (marked with “(*)” in figure legend). Symbols with numbers denote observed vertical run-up.
Overflow, where a substantial part or the entire avalanche went past the obstacle, is denoted with 4,
and slight overflow is denoted with

L
. Double arrows denote (somewhat arbitrary) ranges in the es-

timates for the flow depth, h1 (typically 1–3 m), and velocity, u1 (±15%), of the oncoming avalanche.
Thick arrows correspond to the range in h1 only, using the central estimate for u1 from the above refer-
ences. Thin arrows correspond to ranges in both h1 and u1. For the avalanches where momentum loss
is assumed in the impact, the run-up range corresponding to no momentum loss is shown with dashed
thin arrows. Run-up ranges derived from supercritical overflow are shown with red arrows and ranges
derived from flow depth downstream of a shock with green arrows. Run-up ranges corresponding to
ranges in u1 are in all cases drawn at the location corresponding to the central estimate for u1, so that
the symbol, indicating the observed run-up, and both arrows for each avalanche are drawn at the same
location on the x-axis in the figure (same value of the normal velocity uη = u1 sinϕ).

13). This is the case for all the man-made dams (six avalanches in total), and for six of the
Norwegian avalanches hitting natural obstacles, the Kisárdalur and Flateyri avalanches from
Iceland in 1995, and the Taconnaz avalanche hitting the glacier moraine (see the section about
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the data set below for further explanations). Two of those avalanches (no. 4 and 10) overflowed
obstacles that are considerably lower than the theoretically predicted run-up. The high run-up
on the deflecting dams at Flateyri in 1999 and 2000 (no. 18 and 19) may perhaps be explained
by the run-up marks on loose snow on the dam sides being caused by the saltation layer of the
avalanche rather than by the dense core. Three of the remaining eleven avalanches (no. 13,
21 and 22) overflowed obstacles with height within or lower than the theoretically predicted
ranges, five avalanches (no. 8, 12, 14, 17, 20) produced run-up marks within the ranges or
close to them, one avalanche (no. 15, Langageiti) slightly overflowed an 11 m high dam for
which the upper limit of the predicted ranges is approximately 8.5 m, one avalanche (no. 1,
Åpoldi-G) produced much higher run-up marks than theoretically predicted, even when no
momentum loss is assumed, and one avalanche (no. 16, Kisárdalur) completely overflowed
an obstacle, which is higher than the predicted run-up range, when momentum loss in the
impact is assumed.

The run-up data can, thus, only be partially reconciled with the theoretically predicted
run-up ranges. Dashed arrows in Figure 13 show the run-up range corresponding to no mo-
mentum loss in the impact for the avalanches hitting abrupt obstacles. The difference between
the dashed and solid ranges clearly shows the large effect of the assumed momentum loss.
Similarly, relatively small modifications in the assumed velocity of the avalanches can results
in substantial changes in the predicted run-up ranges. Uncertainty in the flow depth, on the
other hand, has little effect on the predicted run-up, except for the Kisárdalur and Taconnaz
avalanches, which are estimated and/or modelled to have been unusually thick. The Kisár-
dalur avalanche (no. 16) is in the lower part of the dashed range but the Åpoldi-G avalanche
(no. 1) is far above the dashed range and is very difficult to reconcile with the theoretical pre-
dictions. According to NGI reports, the run-up marks of the Åpoldi-G avalanche are likely to
have been produced by the powder part of the avalanche so is not certain that the dense core
reached this high.

Except for the Åpoldi-G avalanche, the assumed momentum loss, leads to run-up ranges
that are in rough agreement with this limited data set, with some avalanches within or at the
lower end of the ranges, and some above, whereas no momentum loss leads to rather high
ranges for the avalanches that hit abrupt obstacles. The Taconnaz avalanche hitting the glacier
moraine in 1999 is in the upper part of the range corresponding to supercritical overflow, when
momentum loss is assumed. Since this is a very large avalanche and the deflecting angle is
rather large (≈ 40◦), this point on Figure 13 indicates that the theory leads to reasonable
run-up predictions for very large events with large normal velocities, and thus is not limited to
laboratory-scale granular flows or small snow avalanches. The avalanche at Flateyri in 1995 is
also quite large and hits a steep gully wall at a rather large deflecting angle (≈ 30◦) with a run-
up that falls within the predicted range. On the other hand, the rather wide spread of the data
points compared with the assumed uncertainty of the theoretical predictions clearly indicates
an incomplete understanding of the dynamics of the impact process. The Åpoldi-G and the
Kisárdalur avalanches, in particular, represent worrisome data points. Another worrisome
observation is provided by a medium-sized avalanche in Seyðisfjörður, eastern Iceland, in
April 2006, which overflowed a 20 m high catching dam, with a steep uppermost 10 m of the
upstream side, leaving little stopped snow on the upstream side of the dam. This avalanche
has not yet been modelled and it is, therefore, not included in the data set shown in Figure 13.
Two other avalanches with the largest run-up in excess of the theoretically predicted run-up
ranges (no. 5 and 6) did not hit abrupt obstacles. They are further discussed in Section 14.
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9 Combined criteria: supercritical overflow and
shock flow depth: max(Hcr +hcr,h2)

Figures 5 and 7 represent the two dam height requirements proposed in Sections 5 and 6. The
figures for deflecting dams have the same scales and can therefore easily be compared. Since
both requirements must be satisfied, the larger dam height corresponding to a given pair of
a Froude number and a deflecting angle must be chosen for each dam under consideration.
For high Froude numbers and large deflecting angles, the criterion derived from supercritical
overflow leads to the higher dam, but for low Froude numbers and small deflecting angles, the
shock criterion leads to the higher dam.

The right panels of Figures 5 and 7 that show run-up height for catching dams have dif-
ferent scales for the y-axis. Figure 14 shows both the supercritical run-up, (Hcr + hcr)/h1,
according to Equation (6), and the flow depth downstream of a normal shock, h2/h1, accord-
ing to Equations (22) and (23), for a catching dam, both as functions of the Froude number,
Fr. The figure shows that supercritical run-up is the determining factor for the design height
of catching dams for Froude numbers above approximately 3, but flow depth downstream of
the shock determines the dam height for lower Froude numbers.

The combined requirements derived from supercritical overflow and flow depth down-
stream of a shock are expressed graphically in Figure 15 for both dams from loose materials
(k = 0.85, left) and steep dams (k = 0.75, right). The design dam height above the snow cover,
hr = H−hs, corresponding to given values of h1 and |uη|= u1 sinϕ, may be read directly from
the higher one of two curves in each figure that represent supercritical overflow (red curves)
and flow depth downstream of a shock (green curves), respectively. The same curves may be
used for both catching and deflecting dams because of the use of the normal shock approx-
imations (22) and (23), according to which run-up on a deflecting dam depends only on the
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Figure 14: Supercritical run-up, (Hcr +hcr)/h1, according to Equation (6) (red curve), and flow depth
downstream of a normal shock, h2/h1, according to Equations (22) and (23) (green curve), as functions
of Froude number, Fr, for a catching dam. The curve for supercritical run-up is drawn assuming no
momentum loss in the impact (k = 1). The part of each curve corresponding to larger dam height is
drawn as a solid thick curve.
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component of the velocity normal to the dam axis in the same manner as for a catching dam.
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Figure 15: Design dam height (normal to the terrain) above the snow cover H − hs as a function
of the component of the velocity normal to the dam axis, |uη| = u1 sinϕ, for several different values
for the depth of the oncoming flow h1. Momentum loss in the impact with the dam is assumed with
k = 0.85 (upper panel, corresponding to dams built from loose materials) and k = 0.75 (lower panel,
corresponding to steep dams). The figures show curves derived from both supercritical overflow (red
curves) and shock dynamics (green curves) labelled with the flow depth h1. The design dam height
should be picked from the higher of the two curves corresponding to the estimated design flow depth.
The part of each family of curves corresponding to the higher dam is drawn with solid, thick curves.
The labelled axes at the top of the figures show velocity corresponding to the deflecting angles ϕ = 15,
25 and 35◦. Note the logarithmic scale on the y-axis.
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Labelled axes at the top of the figure show the upstream velocity u1 corresponding to three
deflecting angles for convenience.

The dependence of the dam height on the upstream flow depth h1 according to the dam
height criteria shown in Figure 15 is somewhat different from the traditional criteria (1) and
(2). According to the traditional criteria, the upstream flow depth affects the dam height sim-
ply as an additional term equal to h1. The flow depth enters the new criteria in a different way,
and at first sight it appears to be a multiplicative quantity in both the criterion that arises from
supercritical overflow and flow depth downstream of the shock (Eqs. (7) and (22)). Figure
15 shows, however, that the expression arising from supercritical overflow predicts a weak
dependency of the dam height on flow depth, particularly for high velocities, as was also seen
in Figure 13. This is due to a partial cancellation of terms in the dam height expression (7).
The dam height derived from flow depth downstream of the shock depends, however, linearly
on h1, for a given Froude number, but approximately linearly on the square root of h1 for a
given upstream velocity u1.
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10 Terrain slope towards the dam: ∆Hψ⊥

It is implicitly assumed in the preceding analysis that the downslope component of gravity
is approximately balanced by friction. Thus, all formulas describing supercritical overflow
and formation of a shock by the dam have been derived without regard to the downslope
component of gravity or to friction. For supercritical overflow, one may assume that for each
part of the avalanche, the impact does not last long enough for frictional forces to reduce
the momentum of the flow significantly. For a normal shock upstream of a catching dam
where the terrain slope is smaller than the internal friction angle of avalanching snow, φ, one
may assume that the propagation of the shock away from the dam will not be much affected
by the slope of the terrain because the snow downstream of the shock is stopped. For flow
downstream of an oblique shock by a deflecting dam on sloping terrain, one may, however,
expect the assumption of an approximate balance of downslope gravity by friction to fail. This
arises because the direction of the flow downstream of the shock is parallel to the dam and
friction arising in this flow can, therefore, not balance the component of gravity normal to the
dam axis. Furthermore, the material does not stop by the dam as for a catching dam so that
there should in general be sufficient agitation in the flow that the material may be expected to
flow towards the dam and form an approximately horizontal profile from the shock towards
the dam in the direction normal to the dam axis (Fig. 16).

The shock height will in this case still satisfy the hydraulic jump equation (16) but the
Froude number in the moving frame of reference, Frn, must be evaluated taking into account
the flow of material across the shock towards the dam that is needed to form the horizontal
profile. The flow will not fully achieve a horizontal profile, but this limiting case is analysed
here since it is the worst case scenario with respect to the required dam height. Also, the shock
front will not be exactly straight under these circumstances as for dams on a level terrain but
this is a reasonable local approximation at each point along the shock because the shock angle
is in practice close to the deflecting angle for deflecting dams that need to be considered in
practice. The dynamic effect of variations in the downstream flow depth, h2, with distance
along the dam is, furthermore, neglected here.

The geometry of the shock along the dam in the moving frame of reference leads to the

Figure 16: Schematic cross section of a shock formed along a deflecting dam built on terrain sloping
towards the dam. In a coordinate system moving with the avalanche along the dam, the shock is
propagating away from the dam with speed c. Material flows across the shock and forms a horizontal
surface in the direction normal to the dam axis. ψ⊥ is the slope of the terrain in the direction normal to
the dam axis and ηs is the width of the shock.
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following expression for the propagation speed of the shock, c, away from the dam

c =
u1h1

e(h2 +ηs tanψ⊥)−h1
, (28)

where ηs is the width of the shock in the direction normal to the dam axis (see Fig. 3), ψ⊥ is
the terrain slope towards the dam, and e is a geometrical factor given by

e = (1+ cosαsinψ⊥/sin(α−ψ⊥)) . (29)

This leads to the following shock relation

(h2/h1)2− (h2/h1)−2Fr2
⊥

(
e(h2 +ηs tanψ⊥)

e(h2 +ηs tanψ⊥)−h1

)2

= 0 , (30)

which determines the shock height h2 at a given distance away from the dam. In general,
Equations (28) and (30) must be solved as a coupled set of equations for ηs and h2, but an
approximate solution is sufficient for our purposes here.

When there is no terrain slope towards the dam, the distance of the shock from the dam is
ηs = tan(θ−ϕ)ξ ≈

√
2/(2Fr cosϕ)ξ, where ξ is distance along the dam from its upstream

end and the approximate expression for the shock widening (θ−ϕ), correct to O(Fr−2), is
from Hákonardóttir and Hogg (2005). This width is an upper bound on the shock width
for dams on a sloping terrain because the effect of the slope towards the dam is to narrow
the shock. The shock height given by (30) may, furthermore, be shown to be comparatively
unaffected by the slope towards the dam relative to the shock height given by (19). Neglecting
a small effect due to the slope of the upstream dam face, these approximations may be used
to express an approximate upper bound on the extra run-up on the dam side (normal to the
terrain) as

∆Hψ⊥ = tanψ⊥ηs =
√

2 tanψ⊥
2Fr cosϕ

ξ . (31)

The increased dam height specified by (31) is in most cases not appreciable, but it needs
to be taken into account in rare cases when ψ⊥ > 5◦, especially if the flow depth is large or
the velocity rather low so that the Froude number is low.
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11 Curvature of the dam axis: ∆Hκ

The analysis has so far been based on the simple geometry of a straight dam that is hit by a
flow with uniform thickness and velocity. Avalanche dams frequently need to be curved along
the dam axis in order to protect as large an area as possible. The curvature of the dam axis then
affects the run-up of the avalanche due to the centripetal acceleration that is introduced as the
flow bends around the curved dam geometry (Fig. 17). The run-up requirement derived from
supercritical overflow is not affected by the curvature of the dam axis because the question of
overflow is settled based on the local dam height and deflecting angle at each point along the
dam axis. As for terrain slope towards the dam discussed in Section 10, the run-up height cor-
responding to the flow depth downstream of a shock along the dam needs to be reconsidered
when the dam is curved, but not the run-up height corresponding to supercritical overflow.

Assuming that the centripetal acceleration is counteracted by a slope of the surface of the
flow away from the dam over the width of the shock that has been formed along the dam, the
extra run-up on the dam side that needs to be taken into account is given by

∆Hκ =
(u1 cosϕ)2

g cos(ψ)Rκ

ηs =
√

2(u1 cosϕ)2

2Fr cos(ϕ)g cos(ψ)Rκ

ξ , (32)

where g is the acceleration of gravity, Rκ is the radius of curvature of the dam axis, ηs is the
width of the shock in the direction normal to the dam axis and ξ is distance along the dam
axis from its upstream end. The same approximations have been used to express the width of
the shock as in the preceding section about terrain slope towards the dam.

Figure 17: The deflection of an avalanche alongside the ≈700 m long, curved deflecting dam below
Ytra-Strengsgil in Siglufjörður, northern Iceland. A circle with a radius of curvature Rκ ≈ 700 m has
been fitted to the curved dam axis. In this case, the assumed design avalanche (u1 = 40–45 ms−1,
h1 = 6–8 m) leads to a significant run-up contribution Rκ ≈ 9 m due to the curvature of the dam at the
downstream end of inflow from the gully towards the dam.
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Avalanches hitting curved deflecting dams often flow out of gullies or confined avalanche
paths where the flow towards the dam has a limited width. The deflecting dam may, however,
extend out of the avalanche stream to divert the avalanche flow away from an area that needs
to be protected. In such cases, the length ξ along the dam in Equation (32) only needs to be
considered up to a maximum value corresponding to the distance along the dam where there
is flow towards the dam upstream of the shock (see Fig. 17). Beyond this point, the maximum
value of ξ and the corresponding distance of the shock from the dam, ηs, may be used all the
way to the downstream end of the dam.

The simple derivations presented here and in the preceding section to take into account
dam curvature and the slope of the terrain towards the dam are sometimes inappropriate when
dam and terrain geometry are complex. In such cases, it is advisable to use 2D avalanche
modelling with a shock capturing algorithm to investigate these effects in more detail, possibly
with guidance from the simple results presented here.
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12 Lateral spreading of the flow below the
downstream end of the dam

Snow avalanches will spread out laterally when they flow past deflecting dams. In some
cases, particularly for wet-snow avalanches, an avalanche or the part of an avalanche may
turn abruptly when it flows past the end of a dam, but in other cases, the avalanche may
continue in the direction of the dam axis and almost no spreading of the flow downstream of
the dam can be seen.

The spreading of granular materials when the lateral constraints provided by a dam come
to an end has been analysed analytically based on shallow fluid theory by (Hogg and others,
2005). This theory predicts that the maximum lateral spreading (in terms of the angular width
of a fan beyond the dam axis formed at the downstream end of the dam) is a decreasing
function of the Froude number of the flow and is approximately given by

φlsp =
2
Fr
− 5

3Fr3 + O
(

1
Fr5

)
. (33)

The theory predicts a spreading of 11–21◦ for Fr in the range 5–10, which is not inconsistent
with a value of 20◦ that has sometimes been adopted in Switzerland for this type of widening
(Stefan Margreth, personal communication 2006). It should be noted that smaller and slower
avalanches than the design avalanche may need to be taken into account when the effect of this
widening below the dam is considered because such avalanches are predicted to form a wider
fan than larger and faster avalanches. As noted above, wet-snow avalanches may make much
sharper turns around dam ends than dry-snow avalanches so this estimate cannot be used for
dams intended as protection against such avalanches.
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13 Storage above a catching dam: S

There must be sufficient space above a catching dam to store the volume of snow correspond-
ing to the deposit of the design avalanche, which is successfully stopped by the dam. Accord-
ing to traditional dam design principles in Switzerland and some other countries (Margreth,
2004), the storage space per unit width above a catching dam is computed as the area between
the snow covered terrain and a line from the top of the dam with a slope of 5–10◦ away from
the mountain (see Fig. 18). This requirement is primarily intended for slow, moist, dense
avalanches (see Fig. 19) and the storage capacity for fast, dry-snow avalanches can be much
smaller. A compaction factor of approximately 1.5, describing the ratio of deposit density to
release density is, furthermore, sometimes used (Stefan Margreth, personal communication
2006). In some cases, the storage space above a catching dam must be dimensioned so that
more than one avalanche per season can be stopped by the dam. This procedure for designing
the storage space is not based on any dynamical principles and it is, therefore, not consistent
with the overall framework described in the previous sections for determining the dam height.

Catching dams are usually built in the run-out zone of avalanches where terrain slope may
be expected to be smaller than the internal friction angle of avalanching snow, φ, which is,
however, not well known and likely depend on the type of snow. In this case, one may expect
a shock propagating upstream from the dam to maintain its thickness away from the dam
(see Hákonardóttir, 2004), even when the terrain slopes towards the dam. There is, however,
considerable uncertainty regarding the propagation of the shock over possibly uneven terrain.
The storage volume computed from shock dynamics in this manner would, for many dams on
sloping terrain, be larger than the volume found with the traditional procedure, because the
deposit thickness would not be reduced much with distance away from the dam.

Observations from the catching dam at Ryggfonn indicate that dry-snow avalanches do
not pile much up against the dam so that the avalanche deposits slope in many case away from
the dam rather than towards the dam.

In the absence of a better choice, it is proposed here to continue to use the traditional
methodology, with a deposit slope of 0–10◦ (see Fig. 18), and without a compaction factor.
The storage volume may then be found from the equation

S =
Z x1

x0

(zl − (zs +hs))dx , (34)

Figure 18: Schematic figure of the snow storage space above a catching dam. hs is the thickness
of snow and previous avalanche deposits on the ground on the upstream side of the dam before an
avalanche hits the dam. HD is the vertical height of the upstream dam side. The figure is adapted from
Margreth (2004).
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Figure 19: A wet-snow avalanche stopped by a catching dam in Ryggfonn, western Norway, on 16
April 2005, photograph: NGI.

where x is horizontal distance from the dam, zl is the elevation of a straight line from the top of
the dam towards the mountain with a chosen slope in the range 0–10◦, zs +hs is the elevation
of the top of the snow cover before the avalanche falls, and x0 and x1 are the locations of
the dam and the point where the line intersects the snow covered mountainside, respectively.
For dams where dry-snow avalanches are expected, deposit slopes close to 0◦ should be used,
but for locations where wetter avalanches are typical slopes up to 10◦ can be chosen. This
procedure is not very satisfactory because it is not based on dynamic principles and needs to
be refined in the future by further studies.
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14 Comparison of the proposed criteria with observations of
natural avalanches that have hit dams or other obstacles

This section summarises available data about run-up of snow avalanches on natural and man-
made obstacles and compares them with the design criteria proposed here. The measured
run-up together with data characterising the avalanches and their paths are tabulated in Table
1. The observed run-up was plotted together with theoretically predicted run-up ranges in
Figure 13 in the previous section about momentum loss in the impact with an obstacle. The
flow depth, h1, and velocity, u1, of the oncoming flow are the most important parameters
determining the predicted run-up, but they are unknown for all the avalanches. The velocity
was estimated by modelling the avalanche flow with several different avalanche models. The
flow depth was estimated subjectively, with some assistance from the modelling for a few of
the avalanches. The uncertainty of u1 is somewhat arbitrarily assumed to be ±15% and h1 is
most often assumed to lie in the range 1–3 m. Snow depth on the terrain before the avalanches
fell, hs, is not taken into account in the derivation of the theoretical run-up ranges. As hs may
be expected to be substantially smaller than the observed run-up, this should not make much
difference for the interpretation of the results.

Run-up of natural avalanche on obstacles is traditionally measured in a vertical cross sec-
tion normal to the dam or obstacle axis in the map plane. This is the run-up that is most easily
measured in the field or on a map showing run-up marks that have been identified in the ter-
rain and positioned with geodetic instruments. In order to compare data on vertical run-up of
natural avalanches with the theory developed here, one must transform the theoretically de-
rived run-up normal to the upstream terrain, hr, to vertical run-up, r. It is also often necessary
to transform deflecting angles measured in the horizontal map plane, ϕh, to deflecting angles
in a sloping plane aligned with the terrain, ϕ (see Fig. 2), which are used in run-up formulae
derived here. Formulae for carrying out these transformations and some related formulae that
are useful in the analysis of run-up data are given below for completeness.

The deflecting angle in the sloping plane, ϕ, may be computed from the deflecting angle
measured on a map, ϕh, and the slope of the upstream terrain, ψ, with the formula

tanϕ = tanϕh cosψ . (35)

Terrain slope in the direction normal to the dam axis, ψ⊥, is given by

sinψ⊥ = sinϕ sinψ . (36)

Vertical run-up, r, can be computed from the run-up normal to the upstream terrain, hr, ac-
cording to

r =
cosψ− sinϕsinψcotα

1− cos2 ϕ sin2
ψ

hr , (37)

where α is the angle of the dam side with respect to the terrain in the direction normal to the
dam axis in a plane normal to the upstream terrain (see Fig. 2 for a geometrical explanation of
the angles used in this equation). The steepest inclination of the dam or the upstream facing
side of the obstacle, αs, satisfies the equation (see Domaas and Harbitz, 1998)

sin2
αs = (cosϕsinψ)2 +(cosψsinα− sinϕsinψcosα)2 , (38)
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from which α may be found using

sin2(α− γ) =
sin2

αs− cos2 ϕsin2
ψ

cos2 ψ+ sin2
ϕsin2

ψ
, (39)

where tanγ = sinϕ tanψ. Finally, the deflecting angle, ϕ, sometimes needs to be found from
the measured angle, ϕc, between the direction of the avalanche and contour lines of the op-
posing slope in the map plane using the formula

tanϕc =
sinϕcosψsinα− sinψcosα

cosϕsinα
. (40)

The above formulae were used to derive an internally consistent set of slopes, deflecting an-
gles and run-up for comparing measured vertical run-up with the theoretical run-up estimates
normal to the terrain derived here. These data were already presented above in Figure 13 as a
part of the discussion of the loss of momentum in the impact with an obstacle, but they will
now be described and discussed in more detail.

Avalanches hitting natural deflecting dams in Norway
Information about 15 avalanches from Norway that have hit terrain obstacles or man-made
dams was obtained from Harbitz and Domaas (1997), Domaas and Harbitz (1998) and Harbitz
and others (2001). The original information has been rechecked and some minor corrections
have been made as described in Harbitz and Domaas (in prep.). The avalanches have esti-
mated volumes ranging from about 15 thousand m3 to 250 thousand m3, and modelled impact
velocities in the range 20–60 ms−1. The vertical run-up ranges from 7 to 90 m. Two of the
avalanches hit man-made dams and all the other avalanches hit natural obstacles. Some of
the avalanches, such as the Tomasjorddalen, Vassdalen and Gaukheidalen avalanches, hit ob-
stacles that have a simple geometry quite similar in form to man-made dams. Others are less
suitable for validation of the theoretical run-up expressions, which are being analysed here.
The upstream velocity of the Norwegian avalanches was estimated with the PCM model by
choosing model parameters that reproduced the observed run-out of the avalanches and based
on experience with this model at NGI (Harbitz and Domaas, in prep.). The upstream flow
depth was in most cases (subjectively) assumed to lie in the range 1–3 m. A slightly larger
flow depth was adopted for the three largest avalanches and a slightly smaller upper limit for
the flow depth was chosen for the four smallest avalanches. The run-up height is in some cases
estimated based on damages to forest which could be caused by the powder cloud component
of the avalanche in which case the height would be an overestimate of the run-up of the dense
core. This applies to the Åpoldi-G, Åpoldi-L and Tomasjorddalen avalanches.

Flateyri, Iceland, 1995
The catastrophic avalanche at Flateyri in 1995, which killed 24 persons, changed direction
when it entered a gully in the middle of its path. The run-up was judged from marks left on
the terrain by boulders, which were advected in large quantities with the avalanche (Þorsteinn
Sæmundsson, personal communication). The run-up marks indicate a vertical run-up of ap-
proximately 20 m at the location of impact with the gully side at approximately 400 m a.s.l.,
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but this must be considered rather uncertain as the run-up marks were not easy to identify at
this location (they were easier to identify farther down the track). However, it is clear that
the avalanche did not overflow the downstream side of gully, which provides a definite up-
per bound of 30–40 m on the vertical run-up. The upstream velocity and flow depth of the
avalanche were modelled with the SAMOS model (Zwinger and others, 2003). The impact
of this avalanche with the gully wall at a deflecting angle of approximately 30◦ provides im-
portant evidence that deflecting dams work roughly in accordance with theory for very large
avalanches at rather high deflecting angles.

Flateyri, Iceland, 1999 and 2000
Two avalanches with volume on the order of 100 thousand m3 have hit the deflecting dams
at Flateyri in northwestern Iceland (Jóhannesson, 2001). The dams have a simple geometry,
which is similar to the simplified geometry assumed in the theoretical analysis presented here
(see Fig. 2). For this reason, they should be suitable for validating the theory. However, the
run-up marks were identified on loose snow on the dam sides and they may, therefore, partly
be formed by the saltation layer of the avalanche rather than by the dense core. The run-up
of these avalanches, thus, provides an upper bound on the run-up, but it is uncertain how
high on the dams the top of the dense core reached. The upstream velocity and flow depth of
this avalanche were modelled with the SAMOS and MN2D depth-averaged, two-dimensional
avalanche models (Zwinger and others, 2003; Mohamed Naaim, personal communication
2006). Based on the deposit thickness and on the model results, an upstream flow depth
h1 =1–2 m was assumed near the dams for both avalanches.

Kisárdalur, Iceland, 1995
The Kisárdalur avalanche in Fnjóskadalur in northern Iceland fell in the Flateyri avalanche
cycle in 1995. It completely overflowed an approximately 60 m high ridge, without leaving
much snow in the gully at the bottom of the ridge, and continued some 250 m beyond the top
of the ridge. The upstream velocity and flow depth of this avalanche was modelled with the
SAMOS avalanche model using similar initial conditions as for the SAMOS modelling of the
Flateyri 1995 avalanche since it fell in the same avalanche cycle. The simulation indicates a
strong channelisation and large flow depth of the avalanche in a gully leading up to the impact
with the ridge. Based on the model results, a flow depth of approximately 10 m was assumed
at the foot of the ridge.

Taconnaz, France, 1999
The avalanche at Taconnaz in France in 1999 is the largest avalanche in the data set with an
estimated volume of 700–800 thousand m3. It hit three obstacles on its way down the lower
part of the approximately 6 km long Taconnaz path and, thus, provides three of the data points
about run-up in Figure 13. First it hit an approximately 60 m high glacier moraine at a de-
flecting angle of approximately 40◦ at a very high velocity, which is here estimated to have
been on the order of 70 ms−1, apparently without overtopping. Earlier avalanches in the same
path have, however, slightly overtopped this moraine (Francois Rapin, personal communica-
tion 2006). Therefore, this avalanche is marked in Table 1 and Figure 13 as having nearly
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overflowed the moraine. Farther down the path, the same avalanche overflowed both a 10 m
high deflecting dam and a 15 m high catching dam. The information about this avalanche was
obtained from the records of Cemagref in Grenoble (Mohamed Naaim and Francois Rapin,
personal communication 2006). The upstream velocity and flow depth of the avalanche at
the dams were modelled with the MN2D depth-averaged, two-dimensional avalanche model
(Mohamed Naaim, personal communication 2006). Based on the model results, a flow depth
of 4–8 m was assumed near the glacier moraine, 5–8.5 m near the upper dam and 3–4.5 m near
the lower dam.

The data set
Table 1 lists the measured run-up of each of the 22 avalanches in the data set together with
data characterising the avalanches and the paths. The flow depth, h1, is given as a range as
described in the previous subsections about the avalanches. The velocity, u1, is given as a
single value but assigned an uncertainty of ±15% in Figure 13 and in the discussion below.

Interpretation
Several interesting features are evident from the data shown in Table 1 and Figure 13. The
most disconcerting aspect of the figure is that three of the Norwegian avalanches (Åpoldi-
G, Lillestølsætra and Vassdalen) and one of the Icelandic avalanches (Kisárdalur) have run-
ups that are substantially higher than can be reconciled with the proposed design criteria.
Although the Kisárdalur avalanche is near the upper limit of the theoretical range, the fact that
it overflowed the obstacle almost completely and continued another 250 m down the slope
indicates that the run-up and overflow in combination are hard to reconcile with the theoretical
predictions. In addition, the Langageiti avalanche slightly overflowed an 11 m high dam for
which the upper limit of the predicted ranges is about 8.5 m, and the Legdefonna avalanche
produced 10 m high run-up marks where the upper limit of the ranges is about 6.5 m. Two
of the Icelandic avalanches on the deflecting dams at Flateyri (Flateyri, Skollahvilft, 1999,
and Flateyri, Innra-Bæjargil, 2000) also have run-ups in excess of the ranges predicted by the
design expressions, but this may, as mentioned above, perhaps be explained by the run-up
marks on loose snow on the dam sides being caused by the saltation layer of the avalanche
rather than by the dense core. Two Norwegian avalanches, which clearly overflowed the
obstacle, apparently without much deflection (Årsæterstøylen and Storegjølet), are well below
the theoretical ranges so this overflow is not unexpected. The remaining 12 avalanches are
within or near the ranges corresponding to the higher one of the proposed criteria, except for
one of the Norwegian avalanches (Indre-Standal-L), which is within the lower range.

The excess run-up of the Langageiti and Legdefonna avalanches may be related to the
very steep terrain (ψ > 35◦) where the dam/obstacle is located in these cases. The assumption
that the downslope component of the gravitational acceleration is approximately balanced by
friction may then not be justified. The angle of the obstacle with respect to the sloping terrain,
α, is, furthermore, rather slight (24◦) for the Legdefonna obstacle, which leads to a large
difference between run-up height normal to the terrain (hr) compared with vertical run-up (r).
These two avalanches indicate that the proposed dam design criteria need to be applied with
caution in very steep terrain, and possibly supplemented with 2D numerical modelling where
the effect of gravity and friction can be treated more satisfactorily.
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Path zo zs ψ ψ⊥ ϕ ϕh αs α h1i h1x u1 Vo Vs r O L

Norwegian avalanches
Åpoldi-G 1300 0 21.8 12.7 36.4 38.5 59 70.7 2 4 31.8 80 250 44.1 f T
Åpoldi-L 1300 0 21.8 17.4 53.7 55.7 41.6 57.8 2 4 31.8 80 250 19.7 f F
Tomasjorddalen 1100 0 21 17.5 56.9 58.7 49 65.8 1 3 51.1 60 200 90 F F
Årsæterstøylen 1000 220 18.4 12.5 43.5 45 37 47.8 2 5 43.1 50 150 11.8 T T
Lillestølsætra 800 195 12.5 8.9 45.8 46.5 18.4 25.2 1 3 32.3 30 100 43.9 F F
Vassdalen 470 210 26.5 16.7 40 43.2 33 44.6 1 3 28 6 12 25 F F
Legdefonna 1400 420 38.3 13.8 22.6 27.9 35.5 23.8 1 3 38.5 40 100 10 f F
Indre-Standal-U 1300 0 29 18.4 40.7 44.5 46 61.8 1 3 40.4 30 50 11.9 F T
Indre-Standal-L 1300 0 8.8 7.7 60.7 61 20.3 27.5 1 3 23 30 50 8.4 f F
Storegjølet 1000 120 20.5 16.3 53.2 55 41.4 56.6 1 3 59.1 25 50 8 T T
Saurasetra 600 375 18.4 8.2 27 28.2 29.7 33.7 1 3 33.5 10 20 12.5 T F
Gaukheidalen 375 50 21.8 9 24.9 26.6 36 40.3 1 2 34.5 7 15 8.7 F T
Drevja 700 20 36 33.6 70.2 73.8 30 62.3 1 3 47.5 NA 150 30 T T
Nautagrovi 1380 0 22 12.1 34 36 39 47.9 1 2 20 NA 100 7 F T
Langageiti 1300 0 36 17.1 30 35.5 39 45.4 1 2 27 NA 60 11 f T

Icelandic avalanches
Kisárdalur-1995 680 355 23 22.5 78.4 79.3 36 58.3 8 12 45 35 70 60 T T
Flateyri-1995 660 0 36 17.3 30.4 35.9 38.7 45.3 3 7 44 280 430 20 F T
FlateyriSkh-1999 660 0 9.5 2.9 18 18.2 40 42.1 1 2 30 54 130 13 F T
FlateyriIBg-2000 660 0 13 5.5 25 25.6 40 44.1 1 2 30 44 110 12 F T

The Taconnaz avalanche
TaconnazGM-1999 4000 1010 34 20.9 39.7 45 35 48.1 4 8 70 NA 800 60 f T
TaconnazDD-1999 4000 1010 13 0 30 30.6 35 40 5 8.5 25 NA 800 10 T T
TaconnazCD-1999 4000 1010 11 11 90 90 70 81 3 4.5 15 NA 800 15 T T

Table 1: Run-up of snow avalanches from Norway, Iceland and France. See the “Notation” section for
explanations of most of the variables. The columns zo and zs give the starting and stopping altitudes of
the avalanches. h1i and h1x are the minimum and maximum estimated flow depth. Vo and Vs are rough
estimates of the volume released from the starting zone and the total volume including entrainment
along the path. The column labelled “O” specifies whether a substantial part or the entire avalanche
overflowed the obstacle (“T”), overflowed the obstacle slightly (“f”), or did not overflow (“F”). The
column labelled “L” specifies whether the path has an abrupt change in slope at the foot of the obstacle
so that momentum loss in the impact with the obstacle is assumed (“T”) or not (“F”). The table contains
both deflecting obstacles and obstacles that are more or less normal to the flow direction as a catching
dam (Åpoldi-L, Tomasjorddalen, Indre-Standal-L, Storegjølet, Drevja, Kisárdalur and TaconnazCD
have ϕ > 50◦). Note that the run-up marks may in some cases have been caused by the saltation or
powder parts of the avalanches in which case the tabulated run-up height would an overestimate of
the run-up of the dense core (this applies in particular to the Åpoldi-G, Åpoldi-L, Tomasjorddalen and
Flateyri 1999 and 2000 avalanches).
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Three of the Norwegian avalanches (Åpoldi-G, Lillestølsætra and Vassdalen) stand out
with very high run-up relative to the theoretical derivations (a difference by a factor on the
order of 2). As mentioned before, the highest run-up marks produced by the Åpoldi-G ava-
lanche are likely to have been produced by the powder part of the avalanche in which case the
observed run-up would be an overestimate of the run-up of the dense core. Nevertheless, the
run-up does not compare well with the proposed criteria. The paths of the Lillestølsætra and
Vassdalen avalanches have rather smooth transitions between the mountainside and the obsta-
cle so that the avalanches are able to flow up on the obstacle without an abrupt change in flow
direction. The Kisárdalur avalanche from Iceland, on the other hand, completely overflowed
an approximately 60 m high opposing slope, which is almost normal to the oncoming flow
direction and meets the upstream mountainside in a rather sharp corner in a gully.

Figure 13 shows nicely how supercritical overflow is the more important overflow mech-
anism for the higher normal velocities, but for lower normal velocities, flow depth down-
stream of a shock becomes more important. An analysis of run-up based only on supercritical
overflow (or on the traditional run-up expressions (1) and (2)) may, therefore, produce a mis-
leading relationship between run-up and normal velocity. The figure shows that the upstream
flow depth, h1, has little effect on the run-up predicted by supercritical overflow except at low
normal velocities (the thick red arrows are very short except near the left end of the figure).

On the positive side, Figure 13 shows that the run-up marks of several medium-sized and
large avalanches are in rough agreement with the proposed criteria, and that the overall vari-
ation of the run-up with normal velocity is in general agreement with the criteria (except of
course for the four abovementioned avalanches with higher run-up and the avalanches at Flat-
eyri in 1999 and 2000). The avalanche at Taconnaz in France in 1999 represents important
data points. It did not overflow the approximately 60 m high glacier moraine, as evidenced
by the symbol in Figure 13 near the upper limit of the range corresponding to supercritical
overflow for momentum loss in the impact. This interpretation of the Taconnaz event indi-
cates that the validity of the criteria is not limited to low speeds or acute deflecting angles,
or to small laboratory scales and only the granular materials that were used in the laboratory
experiments. Farther down the path, the Taconnaz avalanche overflowed a 10 m high deflect-
ing dam and a 15 m high catching dam, which is shown with two symbols in Figure 13 that
fall well within the theoretically predicted ranges. The location of the symbols corresponding
to the three events at Taconnaz in Figure 13 with respect to the theoretically predicted ranges
indicates that the theory does not systematically underestimate or overestimate run-up.

The high observed run-up of some of the avalanches does, however, indicate a larger
uncertainty in the estimated velocity than assumed here, or some run-up mechanism that is not
accounted for in the theoretical analysis. Some of the highest run-up marks may, as mentioned
above, be caused by the impact of the saltation or powder components of the avalanches,
which may, for example, damage forest considerably higher up than the highest point reached
by the dense core. Pressure from the saltation or powder layers can, however, not account for
the complete overflow of the Kisárdalur avalanche, which left very little snow in the gully at
the foot of the obstacle. These events need to be taken as reminders of the imperfect dynamic
basis of the proposed run-up criteria, indicating that natural avalanches are perhaps of several
different types, which are not adequately described by a single dynamic framework. In spite
of the problems indicated by the partial agreement between the run-up data and the new design
criteria, these criteria are proposed here as a substantial improvement over traditional criteria.
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15 Unresolved issues
Several issues need to be further investigated in order to improve avalanche dam design criteria
beyond the guidelines proposed here. The most important issues that must be addressed are
listed below.

Loss of momentum in the impact with the dam. The proposed values of the k-factor (Eq.
(27)) are based on weak arguments. In particular, new analysis of data about dam over-
flow from the full-scale Ryggfonn test site in Norway (NGI, 2005) indicates that very
little energy loss occurs above a dam with a side slope of about 40◦. These results may
be interpreted as an indication that loss of kinetic energy in the impact with the dam, for
avalanches that overflow, equals on the order of half the potential energy corresponding
to the freeboard of the dam. This means that λ is on the order of 0.5 in this case, rather
than 1.5, as proposed here! These results are very disconcerting and need to be anal-
ysed further. They may indicate the lack of some fundamental dynamic process in the
analysis of overflow, which is summarised in this report. Observations of run-up marks
on natural obstacles for real snow-avalanches indicate, however, that much more energy
than this is lost in impacts of avalanches with abrupt obstacles. Run-up marks and data
about avalanche overrun need to be analysed further to resolve this discrepancy.

The maximum deflecting angle ϕmax. The requirement that ϕ is at least 10◦ smaller than
ϕmax needs to be discussed further. Is the rather arbitrary value of 10◦ appropriate or
should some other value be chosen?

Effect of terrain slope towards the dam on the shock height. Hydraulic jumps in fluid flow
in sloping channels are affected by the channel slope, which leads to an increase in
flow depth downstream of the jump for positive slopes (see Chow, 1959). This effect,
which arises from the action of the gravitational force over length of the jump, can
be taken into account by an adjustment of the Froude number based on empirical data
about water flows. However, granular jumps have been observed to be considerably
shorter than water jumps (see Hákonardóttir, 2004), and the gravitational force is here
assumed to be to a large extent balanced by frictional forces in shocks that are formed
above avalanche dams. Therefore, it is not clear to what extent this effect of terrain
slope should be taken into account in design criteria for avalanche dams. If dams are
constructed in areas where the avalanches may be expected to be slowing down, one
might even argue that this is equivalent to fluid flow in an up-sloping channel, where
this effect acts in the opposite direction.

Effect of entrainment and deposition. Deposition may be an important process when an av-
alanche hits a dam and entrainment can possibly have an effect under some circum-
stances but these effects have been neglected here.

Effect of the saltation and powder parts. A major limitation of the dynamic description of
the impact process developed here results from the depth-averaged formulation of the
shallow flow of the dense core of the avalanche. As a consequence, the saltation and
powder components are ignored. These components may lead to important overflow in
some cases and they may cause substantial impact on structures below the dam, which
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cannot be evaluated based on the simplified dynamic framework. This limitation needs
to be addressed in further studies.

46



16 Conclusions
The dam height criteria suggested here are derived from an internally consistent description
of the dynamics of the flow of snow avalanches against obstacles based on shallow fluid
dynamics. In that respect, they are a step forward from traditional criteria based on point-mass
dynamics that are not consistent with the avalanche body having non-zero width or length.

The new criteria are based on two separate requirements. Firstly, uninterrupted, supercrit-
ical flow over the dam must be prevented, and, secondly, the dam must be higher than the
flow depth below an oblique or a normal shock that may form upstream of the dam. An ava-
lanche dam must be higher than the maximum of the two requirements. A set of geometrical
transformations makes it possible to adapt the requirements to dams that need to be built on
sloping terrain.

In spite of the advance provided by the depth-averaged, shallow fluid dynamics, the pro-
posed dam height criteria can only be partially reconciled with field evidence about the run-up
of avalanches against dams and natural obstacles. Many avalanches produced run-up marks
that are in reasonable agreement with the theoretical preductions. Several avalanches have,
however, produced higher run-up marks or overflowed higher obstacles than predicted by the
theory, indicating a large uncertainty in the estimated impact velocity, or a run-up mechanism
that is not accounted for in the theoretical analysis.
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A Summary of the dam design procedure
It is proposed that the design height of both catching and deflecting dams be determined based
on essentially the same dynamic principles and carried out in a stepwise fashion according to
the following list. The required dam height, H, normal to the terrain, is the sum of the run-up
of the design avalanche on the dam side, hr, and the snow depth on the terrain upstream of the
dam, hs,

H = hr +hs , where hr = max(Hcr +hcr,h2 +∆Hψ⊥ +∆Hκ) . (41)

The steps are as follows (see Figs. 1, 2, 3 and 4 and the list on page 54 below for explanations
of the meaning of the variables):

1. Estimate appropriate design values for the velocity and flow depth of the avalanche at
the location of the dam, u1, h1, and for the snow depth on the terrain upstream of the
dam, hs.

2. For a deflecting dam, determine the deflecting angle ϕ. For a catching dam, ϕ = 90◦.

3. Compute the Froude number of the flow, Fr, according to Equation (4), and the compo-
nent of the velocity normal to the dam axis, |uη|= u1 sinϕ. Determine the momentum
loss coefficient k according to Equation (27). The coefficient k represents the loss of
momentum normal to the dam axis in the impact and depends on the angle of the upper
dam side with respect to the terrain α.

4. Compute the sum of the critical dam height, Hcr, and the corresponding critical flow
depth, hcr, according to Equation (6) or (7) (see Fig. 5). The dam height above the snow
cover must be greater than Hcr + hcr. If the dam height above the snow cover is lower
than Hcr, the avalanche may overflow the dam in a supercritical state. If the dam height
is lower than Hcr +hcr, the front of the avalanche may overflow the dam while a shock is
being formed. Note that some overflow may occur in the initial impact due to splashing
even when this criterion is satisfied.

5. Compute the flow depth, h2, downstream of a shock upstream of the dam according
to Equation (22) (see Fig. 7). The dam height above the snow cover, hr, must also be
greater than h2.

6. The requirements expressed in the previous two items in the list are expressed graphi-
cally in Figure 15. The design dam height above the snow cover, hr = H− hs, corre-
sponding to given values of h1 and |uη|, may be read directly from the higher one of the
two curves on the graph (representing supercritical overflow and flow depth downstream
of a shock, respectively).

7. For a deflecting dam, check whether an attached, stationary, oblique shock is dynam-
ically possible by verifying that the deflecting angle, ϕ, is smaller than the maximum
deflecting angle, ϕmax, corresponding to the Froude number Fr according to Equation
(25) (see Fig. 8). It is recommended that ϕ is at least 10◦ smaller than ϕmax. If a dam
does not satisfy this requirement, the flow depth downstream of the shock, h2, in item
5 must be calculated for ϕ = 90◦. The dam is thus dimensioned as a catching dam
with regard to the flow depth downstream of the shock, while the criterion based on
supercritical overflow in item 4 is computed with the original value of ϕ as before.
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8. If the terrain normal to the dam axis slopes towards the dam, the height of a deflecting
dam derived from shock dynamics (see item 5) must be increased by ∆Hψ⊥ according
to Equation (31). The dam height corresponding to supercritical overflow (Hcr + hcr,
see item 4) is not increased due to this effect.

9. If the dam axis is curved, the height of a deflecting dam derived from shock dynamics
(see item 5) must be increased by ∆Hκ according to Equation (32). This additional
term may come on top of ∆Hψ⊥ in case the upstream terrain slopes towards the dam as
described in the previous item. The dam height corresponding to supercritical overflow
(Hcr +hcr, see item 4) is not increased due to this effect.

10. Compute the vertical dam height, HD, by substituting r by HD and hr by H in Equation
(37).

11. For a deflecting dam, evaluate the extent of the region affected by an increased run-out
distance caused by the interaction of the avalanche with the dam. The construction
of a dam leads to increased avalanche risk within this area. Also, evaluate the lateral
spreading of the avalanche downstream of the dam (see Section 12). Possible lateral
spreading will limit the area protected by the dam.

12. For a catching dam, compute the available storage space normal to the dam axis up-
stream of the dam per unit length along the dam according to Equation (34). The stor-
age per unit width or storage area, S, must be larger than the volume of the avalanche
divided by its width (see Fig. 18).

The main new features of this procedure to dimension dams are:

• The dam design is based on a consistent dynamic description of the interaction of shal-
low granular flow and an obstruction.

• Shock dynamics are used to derive run-up heights on dams, which determine the dam
height under some conditions.

• The necessary dam height to prevent supercritical overflow is also used to derive run-up
heights on dams, which determines the design-dam height under other conditions.

• A maximum allowable deflecting angle, derived from shock dynamics, limits the range
of possible deflecting angles of deflecting dams.

• Momentum loss in the impact with a dam is calculated from the component of the ve-
locity normal to the dam in the same way for both catching and deflecting dams.

• Avalanche flow along deflecting dams becomes channelised, which may lead to a sub-
stantial increase in run-out in the direction of the channelised flow.

• A consistent dynamic framework makes it possible to account for the slope of the terrain
where a dam is located and a curvature of the dam axis in the dam design.
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In practice, these requirements are satisfied in an iterative process, where the dam location,
the slope of the upstream face of the dam and the deflecting angle are varied to minimise the
construction cost, while taking into account other relevant conditions such as distance to the
protected settlement, availability of suitable construction materials and various environmental
aspects.

The above procedure is not applicable for wet-snow avalanches.
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B Notation
The following list defines the variables used to describe the geometry of the terrain and the
dam and the flow of the (dense core of the) avalanche at the dam location. Figures 1, 2 and 3
provide schematic illustrations of the meaning of the variables.

u1,h1 Velocity and flow depth of the oncoming flow upstream of any disturbance to the flow
caused by the dam.

Fr Froude number, Fr = u√
gcosψ h1

.

Fr⊥ “Froude number” corresponding to the component of the velocity normal to the dam,
Fr⊥ = Fr sinϕ.

Frn “Froude number” corresponding to the component of the velocity normal to the shock in
a moving frame of reference where the shock is stationary.

H Dam height. In this document, H is measured in the direction normal to the terrain in order
to simplify derivations and formulations of results. In the final formulation of design
criteria, dam height is defined in a vertical cross section normal to the dam axis in a
horizontal plane.

∆Hψ⊥ Extra deflecting dam height due to terrain slope towards the dam.

∆Hκ Extra deflecting dam height due to the effect of the curvature of the dam axis.

HD Vertical dam height measured in a vertical cross section normal to the dam axis in a
horizontal plane.

hs Thickness of snow and previous avalanche deposits on the ground on the upstream side of
the dam before an avalanche falls.

r Vertical run-up of an avalanche measured in a vertical section normal to a dam or obstacle
axis in a horizontal plane.

Hcr Critical dam height. The maximum height of a dam over which uninterrupted, supercrit-
ical flow may be maintained.

hcr Critical flow depth. Depth of flow over a dam with height Hcr at the top of the dam.

hr Run-up height or design dam height, depending on the context, above the snow cover,
hr = max(Hcr +hcr,h2).

Rκ Radius of curvature of the dam axis.

u2, h2 Velocity and flow depth downstream of a shock that is formed in the flow against a
dam.

S Storage space per unit width of the avalanche above a catching dam.

ψ Slope of the terrain at the location of the dam.
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ψ⊥ Slope of the terrain in the direction normal to the dam axis.

α Angle of the dam side with respect to the sloping terrain in the direction normal to the dam
axis in a plane normal to the upstream terrain.

αs The steepest inclination of the dam side.

ϕ Deflecting angle of the dam (ϕ = 90◦ for a catching dam) in a sloping coordinate system
aligned with the terrain.

ϕh Deflecting angle of the dam (ϕh = 90◦ for a catching dam) in the map plane, that is the
angle between the horizontal projections of the avalanche direction and the dam axis.

ϕmax Maximum deflecting angle for which an attached, stationary, oblique shock may be
formed.

ϕlsp Maximum lateral spreading (in terms of the angular width of the fan) beyond the dam
axis formed at the downstream end of a deflecting dam.

θ Shock angle for a stationary, oblique shock upstream of a deflecting dam.

∆ Widening of a shock along a deflecting dam, ∆ = θ−ϕ.

k Relative reduction in normal velocity in the impact with the dam.

λ An empirical parameter describing the effect of momentum loss during the impact and the
effect of friction of the avalanche against the upstream side of the dam in the traditional
expression for design dam height.

µ Friction coefficient for Coulomb friction.

φ Internal friction angle of avalanching snow.

x,y,z A coordinate system with the x,y-axes in the plane of the terrain near the dam location
with the x-axis in the direction of the oncoming flow upstream of the dam.

ξ,η,ζ A coordinate system with the ξ,η-axes in the plane of the terrain near the dam location
with the ξ-axis along the axis of the dam and the η-axis normal to the dam. ξ is also
used to denote distance along the dam axis from the upstream end of a (possibly curved)
deflecting dam.

uξ,uη Velocity components parallel to the terrain in the ξ,η,ζ-system.

n,s A coordinate system moving with the shock with the s,n-axes in the plane of the terrain
near the dam location with the s-axis in the direction of the shock formed above of the
dam and the n-axis normal to the shock.

un,us Velocity components in the s,n-system (us = 0).
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C The R package viadam
The formulas for the computation of supercritical run-up and flow depth downstream of
a shock described in Sections 5 and 6 have been written up and documented as a library
for the public doman software package R (see “http://www.r-project.org/” and “http://cran.r-
project.org/”). R is a free software environment and programing language for statistical com-
puting and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows
and MacOS. The viadam package includes functions to compute various characteristics of
oblique shocks, the deflecting angle in a sloping reference frame aligned with the terrain, ϕ,
from the deflecting angle in the map plane, ϕh, and vice versa, the vertical dam height HD
from dam height normal to the sloping terrain, H, and various other transformations and for-
mulas that are described in Section 14. The package may be downloaded from the avalanche
and landslide section of the web of Icelandic Meteorological Office (“http://www.vedur.is”).
The documentation of this package is reproduced on the following pages.
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October 20, 2008

Title VI-Avalanche-Dams, height and geometry for avalanche dams

Version 1.0

Author Tomas Johannesson, Icelandic Met. Office

Description R-functions for computation of design height and geometry for avalanche dams, run-up
height of avalanches on dams and natural obstructions and various other quantities related to the
flow of snow avalanches against obstructions. The functions are bundled together in this package
to provide a tested software package for evaluating expressions that are described in the report
"The design of avalanche protection dams. Recent practical and theoretical developments" edited
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Communities, 2008, ISBN 978-92-79-08885-8). Note that this software is only intended to assist
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2 damangle

damangle Angle of a dam side with respect to the surrounding terrain

Description

Computes the angle of a dam side with respect to the sloping, upstream surrounding terrain from
deflecting angle, slope of the terrain, and the steepest slope of the dam side.

Usage

damangle(phi,psi,alfas)

Arguments

phi deflecting angle with respect to the direction of steepest decent in a sloping
coordinate system aligned with the terrain.

psi the slope of the terrain.

alfas the steepest slope of the dam side.

Value

damangle returns a vector of angles subtended by the dam side with respect to the terrain with
the same number of elements as phi, psi or alfas.

Note

The angle of the dam side with respect to the sloping terrain is measured in the direction normal to
the dam axis in a plane normal to the upstream terrain.

The angles phi, psi and alfas are given in radians.

Author(s)

Tomas Johannesson

See Also

vdamheight, sdamslope, phi2phi and phicontour.

Examples

## Not run:
damangle(25*pi/180,10*pi/180,45*pi/180)
## End(Not run)



mound.jump 3

mound.jump Geometry of a jet formed in the impact with a mound or a dam.

Description

Compute the ballistic trajectory of a jet formed by the flow of an avalanche that hits a braking
mound or a dam.

Usage

mound.jump(u0,beta,h,psi,k,fph=0.004,dt=0.1)

Arguments

u0 upstream velocity in metres per second.

beta throw angle in the sloping coordinate system aligned with the terrain.

h height of the mound above the snow cover in the direction normal to the terrain.

psi slope of the terrain.

k dimensionless number representing the effect of energy dissipation in the impact
of the avalanche with the mound, recommended value is is k = 0.8, but k = 0.7,
0.8 and 0.9 should all be tested. The value of k is the throw velocity of the
jet at the top of the dam relative to the velocity that corresponds to no loss of
mechanical energy.

fph a coefficient with dimensions of m−1 that represents the effect of air resistance
on the jet, default value is 0.004 m−1.

dt time step in the Runge-Kutta integration, default value is 0.1 s.

Value

The function returns a list of vectors including the elements res, which contains the result of the
integration: u1 (throw speed from the top of the mound), x2 (slope distance to the landing point of
the jet), x2cpsi (map distance to the landing point of the jet), u2 (speed of the jet at the landing
point) and betalnd (angle of the jet at the landing point with respect of the terrain); par, which
contains the arguments of the call to the function; and x, y and u, which are arrays of coordinates
and speed along the computed trajectory.

Note

The computation of the ballistic jet is carried out in a sloping coordinate system that is aligned with
the terrain in the neighbourhood of the mound or dam. This must be taken into consideration if one
wishes to draw the geometry of the jet using the returned arrays x and y (x represents distance from
the mound top along the sloping terrain and y is height above the terrain/snow cover in the direction
normal to the terrain).

The height of the mound is defined as the height above the snow cover. The snow cover is for
simplicity assumed to be uniform in thickness all along the terrain down to the landing point of the
jet.

Author(s)

Tomas Johannesson
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See Also

viadam.runge.kutta.

Examples

## Not run:
mound.jump(32,55*pi/180,10,11*pi/180,k=0.8)$res
## End(Not run)

mxphi The maximum deflecting angle of an oblique shock

Description

Computes the deflecting and shock angles corresponding to the maximum deflecting angle that
separates the weak and strong oblique shocks for a particular value of the Froude number.

Usage

mxphi(Fr,method=c("exact","approximate"))

Arguments

Fr Froude number.

method method for the computation. For method = "exact", a numerical solution of
the exact oblique shock relations is found. For method = "approximate", an
approximate explicit solution valid for large Froude numbers is used.

Value

mxphi returns returns dataframe with two column: the shock angle teta) and the deflecting angle
phi. They have the same number of elements as Fr.

Note

The returned angles teta and phi are given/returned in radians.

The approximate expression for the maximum deflecting angle, used when method = "approxi-
mate", is accurate to O(Fr−5/2)).

Author(s)

Tomas Johannesson

See Also

obliqueshock and obliquenshock.

Examples

## Not run:
mxphi(7,method="exact")
## End(Not run)
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obliquenshock Approximate characteristics of an oblique shock

Description

Computes the shock angle, shock thickness, downstream velocity and downstream momentum flux
for an oblique shock as functions of deflecting angle and Froude number using an approximation
based on the flow against a normal shock with the speed of the normal component of the oblique
flow.

Usage

obliquenshock(phi,Fr)

Arguments

phi deflecting angle with respect to the direction of steepest decent in a sloping
coordinate system aligned with the terrain.

Fr Froude number.

Value

obliquenshock returns a dataframe containing the variables phi (deflecting angle), delta
(difference between teta and phi, i.e. width of the stream along the deflecting wall), teta
(shock angle), h2ph1 (relative change in flow depth across the shock), u2pu1 (relative change
in flow speed across the shock) and h2u2ph1u1 (relative change in momentum flux across the
shock). These variables have the same number of elements as teta or Fr. The Froude number
and the Froude number normal to the wall are returned as the attributes Fr and Fp of the list.

Note

The angle phi is given in radians and so are all angles that are returned by the function.

This function computes the characteristics of a weak oblique shock. The corresponding strong
oblique shock with a (much) larger value of the shock angle teta is eliminated by the approxima-
tions used in the derivations of the formulas used. The function obliqueshock may be used to
obtain both types of the oblique shock.

The approximations used in this function provide good accuracy for Fr>2.5 and deflecting angles
phi somewhat below the maximum deflecting angle which separates the weak and strong shocks
for a particular value of the Froude number Fr.

Author(s)

Tomas Johannesson

See Also

obliqueshock and mxphi.
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Examples

## Not run:
obliquenshock(15*pi/180,7)
## End(Not run)

obliqueshock Characteristics of an oblique shock

Description

Computes the deflecting angle, shock thickness, downstream velocity and downstream momentum
flux for an oblique shock as functions of shock angle and Froude number.

Usage

obliqueshock(teta,Fr)

Arguments

teta shock angle.

Fr Froude number.

Value

obliqueshock returns a dataframe containing the variables teta (shock angle), phi (deflecting
angle), delta (difference between teta and phi, i.e. width of the stream along the deflecting
wall), h2ph1 (relative change in flow depth across the shock), u2pu1 (relative change in flow
speed across the shock) and h2u2ph1u1 (relative change in momentum flux across the shock).
These variables have the same number of elements as teta or Fr. The Froude number is returned
as the attribute Fr of the list.

Note

The angle teta is given in radians and so are all angles that are returned by the function.

This function returns the theoretically exact oblique shock solution, which represents both the weak
and strong shocks, so that the shock angle teta is a double valued function of the deflecting angle
phi.

Author(s)

Tomas Johannesson

See Also

obliquenshock and mxphi.

Examples

## Not run:
obliqueshock(22*pi/180,7)
## End(Not run)
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phi2phi Deflecting angles in different coordinate systems

Description

Convert from a deflecting angle in a sloping coordinate system aligned with the terrain to deflecting
angle in a horizontal projection.

Usage

phi2phi(phi,phih,psi)

Arguments

phi deflecting angle with respect to the direction of steepest decent in a sloping
coordinate system aligned with the terrain.

phih deflecting angle with respect to the direction of steepest decent in the map plane,
that is the angle between the horizontal projections of the avalanche direction
and the dam axis.

psi the slope of the terrain.

Value

phi2phi returns a vector of angles with the same number of elements as phi, phih or psi.

Note

The arguments must be named so that the routine can differentiate between phi and phih.

The angles phi, phih and psiare given in radians.

In general, phi≤ phih so that the deflecting angle in the map plane may be used as a conservative
estimate of the deflecting angle for dam design.

Author(s)

Tomas Johannesson

See Also

vdamheight, sdamslope, damangle and phicontour.

Examples

## Not run:
phi2phi(phi=25*pi/180,psi=10*pi/180)
## End(Not run)
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phicontour "Deflecting" angle of contour lines on a dam side

Description

Computes the “deflecting angle” of contour lines on a dam side from deflecting angle, slope of the
terrain, and the angle of the dam side with respect to the terrain.

Usage

phicontour(phi,psi,alfa)

Arguments

phi deflecting angle with respect to the direction of steepest decent in a sloping
coordinate system aligned with the terrain.

psi the slope of the terrain.

alfa the angle of the dam side with respect to the sloping terrain in the direction
normal to the dam axis in a plane normal to the upstream terrain.

Value

phicontour returns a vector of angles with the same number of elements as phi, psi or alfa.

Note

The returned “deflecting angle” of the contour lines on the dam side is defined in the map plane.

This function is useful in an analysis of the flow of avalanches against natural obstructions where
a “dam axis” is in many cases not easily defined. The returned “deflecting angle” of the contour
lines may be compared with angles measured from maps and used to compute the deflecting angles
phi and phih (see phi2phi) corresponding to a dam that is dynamically equivalent to the terrain
obstruction.

The angles phi, psi and alfa are given in radians.

Author(s)

Tomas Johannesson

See Also

vdamheight, sdamslope, damangle and phi2phi.

Examples

## Not run:
phicontour(25*pi/180,10*pi/180,40*pi/180)
## End(Not run)
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runuph Run-up height of an avalanche on a dam or an obstacle.

Description

Run-up height of an avalanche on a dam or an obstacle corresponding to both supercritical overflow
and downstream thickness of a shock.

Usage

runuph(phih,u1,h1,psi,psip,alfa,k,kp,xi,hs)

Arguments

phih deflecting angle with respect to the direction of steepest decent in the map plane,
that is the angle between the horizontal projections of the avalanche direction
and the dam axis.

u1 upstream velocity in metres per second.

h1 upstream flow depth in metres.

psi the slope of the terrain.

psip the slope of the terrain in the direction normal to the dam.

alfa the angle of the dam side with respect to the sloping terrain in the direction
normal to the dam axis in a plane normal to the upstream terrain.

k a dimensionless coefficient representing momentum loss normal to the dam axis
in the impact, computed from alfa if not specified.

kp curvature of the dam axis for a deflecting dam, equal to one over the radius of
curvature, set to zero if not specified.

xi distance along the dam from its upstream end or the upstream end of the impact
with the avalanche, set to zero if not specified.

hs snow depth and thickness of previous avalanche deposits on the terrain, set to
zero if not specified.

Value

The function returns a dataframe with variables/columns describing supercritical overflow and
shock that may be formed by the upstream dam face. The variables of the returned dataframe
are:

phi deflecting angle with respect to the direction of steepest decent in a sloping
coordinate system aligned with the terrain.

Fr1 upstream Froude number.

u1n velocity normal to the dam axis.

Fr1n “Froude number” in the direction normal to the dam axis.

Hcr critical dam height.

hcr critical flow depth.

hrp supercritical run-up, i.e. Hcr + hcr.
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teta shock angle.

delta shock widening, i.e. the angle subtended by the shock with respect to the dam.

h2 flow depth downstream of a shock.

u2 flow velocity downstream of a shock.

dHslp extra run-up due to slope towards the dam for a deflecting dam.

dHcrv extra run-up due to dam curvature for a deflecting dam.

hrmx maximum of supercritical run-up and flow depth downstream of a shock plus
extra run-up due to slope towards the dam and dam curvature for a deflecting
dam and plus snow depth on the terrain (in the sloping coordinate system aligned
with the terrain).

hd vertical runup corresponding to hrmx.

The attribute par of the returned variable contains the arguments of the call to the function, also as
a dataframe.

Note

In contrast to most of the other functions in the viadam library, this function accepts dimensional
arguments (e.g. flow depth in metres and velocity in metres per second) and returns dimensional
quantities (e.g. dam height in metres). Most of the other functions accept non-dimensional quantities
such as Froude numbers and angles and return non-dimensional quantities such as the downstream
flow depth h2 relative to the upstream flow depth h1.

The arguments k, kp, xi and hs are optional and have default values that are described above. They
should be named ef they are specified (see example with hs specified in the Examples section).

Author(s)

Tomas Johannesson

See Also

obliquenshock, mxphi and vdamheight.

Examples

## Not run:
runuph(18*pi/180,45,2,11*pi/180,3*pi/180,35*pi/180,hs=3)
## End(Not run)

sdamslope Steepest slope of a dam side

Description

Computes the steepest slope of a dam side from deflecting angle, slope of the terrain, and the angle
of the dam side with respect to the terrain.

Usage

sdamslope(phi,psi,alfa)
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Arguments

phi deflecting angle with respect to the direction of steepest decent in a sloping
coordinate system aligned with the terrain.

psi the slope of the terrain.

alfa the angle of the dam side with respect to the sloping terrain in the direction
normal to the dam axis in a plane normal to the upstream terrain.

Value

sdamslope returns a vector of slopes with the same number of elements as phi, psi or alfa.

Note

The angles phi, psi and alfa are given in radians.

Author(s)

Tomas Johannesson

See Also

vdamheight, damangle, phi2phi and phicontour.

Examples

## Not run:
sdamslope(25*pi/180,10*pi/180,40*pi/180)
## End(Not run)

vdamheightngi Vertical dam height with an alterative formula

Description

Computes vertical dam height from dam height normal to the terrain, deflecting angle, slope of the
terrain, and the angle of the dam side with respect to the terrain.

Usage

vdamheightngi(phi,psi,alfa,h)

Arguments

phi deflecting angle with respect to the direction of steepest decent in a sloping
coordinate system aligned with the terrain.

psi the slope of the terrain.

alfa the angle of the dam side with respect to the sloping terrain in the direction
normal to the dam axis in a plane normal to the upstream terrain.

h dam height normal to the terrain.
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Value

vdamheightngi returns a vector of vertical dam heights with the same number of elements as
phi, psi, alfa or h.

Note

The vertical dam height is measured in a vertical cross section normal to the dam or obstacle axis
in the map plane.

The angles phi, psi and alfa are given in radians.

This function is equivalent to the function vdamheight but uses a different mathematical ex-
pression (from NGI reports) to compute the vertical damheight. It is only defined for validation
purposes.

Author(s)

Tomas Johannesson

See Also

vdamheight.

Examples

## Not run:
vdamheightngi(25*pi/180,10*pi/180,40*pi/180,15)
## End(Not run)

vdamheight Vertical dam height

Description

Computes vertical dam height from dam height normal to the terrain, deflecting angle, slope of the
terrain, and the angle of the dam side with respect to the terrain.

Usage

vdamheight(phi,psi,alfa,h)

Arguments

phi deflecting angle with respect to the direction of steepest decent in a sloping
coordinate system aligned with the terrain.

psi the slope of the terrain.

alfa the angle of the dam side with respect to the sloping terrain in the direction
normal to the dam axis in a plane normal to the upstream terrain.

h dam height normal to the terrain.



viadam.mxdffn 13

Value

vdamheight returns a vector of vertical dam heights with the same number of elements as phi,
psi, alfa or h.

Note

The vertical dam height is measured in a vertical cross section normal to the dam or obstacle axis
in the map plane.

The angles phi, psi and alfa are given in radians.

Author(s)

Tomas Johannesson

See Also

sdamslope, damangle, phi2phi, phicontour and vdamheightngi.

Examples

## Not run:
vdamheight(25*pi/180,10*pi/180,40*pi/180,15)
## End(Not run)

viadam.mxdffn Utility function to compute the maximum deflecting angle as a function
of shock angle

Description

Computes an expression related to the the derivative of the deflecting angle as a function of the
shock angle for use in a function to compute the maximum deflecting angle.

Usage

viadam.mxdffn(teta,Fr)

Arguments

teta shock angle.

Fr Froude number.

Value

viadam.mxdffn returns a vector of values of an expression related to the derivative of the de-
flecting angle phi as a function of the shock angle teta for the given value of the Froude number
Fr. This expression is zero at the maximum deflecting angle for the given Froude number. The
returned vector has the same number of elements as teta.
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Note

The angle teta is given in radians and so is the returned angle phi.

This function is written for use in the function mxphi and is not intended for other use.

Author(s)

Tomas Johannesson

See Also

mxphi.

Examples

## Not run:
viadam.mxdffn(22*pi/180,7)
## End(Not run)

viadam.runge.kutta Fourth-order Runge-Kutta integration

Description

One step of the fourth-order Runge-Kutta integration algorithm for a first order system of differen-
tial equations.

Usage

viadam.runge.kutta(x,dx,y,f)

Arguments

x the starting point of the integration.

dx the step size in x.

y the initial value of the solution at x (a vector of the same length as the number
of equations).

f a function expressing the derivative of y with respect to x as a function of x
and y, that is the right hand side of the differential equation y’ = f(x,y). f
must be defined as a function of two arguments (a single number x and a vector
y of the same length as the number of equations) returning a vector (of the same
length as the number of equations).

Value

The function returns the solution y at x+dx.
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Note

viadam.runge.kutta is typically called repeatedly increasing the value of x by dx in every
iteration as shown in the example. The argument f must be a function object, which can either be
defined beforehand and referred to by its name, or be defined on the fly as in

viadam.runge.kutta(x,dx,y,(function(x,y){y})).

This function is written for use in the function mound.jump and is not intended for other use. It is
included in the viadam package to make the package independent of any other utility package for
R. There are many other packages that contain good Runge-Kutta integration routines that are more
suitable for general use for solving differential equations. This routine is, however, good enough
for the problem that needs to be solved in mound.jump.

Author(s)

Tomas Johannesson

See Also

mound.jump.

Examples

## Not run:
yp <- function(x,y) {c(y[2],y[1])}
n <- 10; dx <- 1/n; x <- 0; y <- c(1,1)
for (i in 1:n) { y <- viadam.runge.kutta(x,dx,y,yp); x <- x+dx }
y[1]
y[1]-exp(1)
## End(Not run)
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